Skip to main content
Log in

On the moving load problem in beam structures equipped with tuned mass dampers

  • New Trends in Dynamic and Stability
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper proposes an original and efficient approach to the moving load problem on Euler–Bernoulli beams, with Kelvin–Voigt viscoelastic translational supports and rotational joints, and in addition, equipped with Kelvin–Voigt viscoelastic tuned mass dampers (TMDs). While supports are taken as representative of external devices such as grounded dampers or in-span supports with flexibility and damping, the rotational joints may model rotational dampers or connections with flexibility and damping arising from imperfections or damage. The theory of generalised functions is used to treat the discontinuities of the response variables, which involves deriving exact complex eigenvalues and eigenfunctions from a characteristic equation built as determinant of a 4 × 4 matrix. Based on built pertinent orthogonality conditions for the deflection eigenfunctions, a closed-form analytical response is established in the time domain. The proposed solution holds for any number of TMDs and along-axis supports/joints. To show its applicability, accuracy and efficiency, in a numerical application a beam with multiple supports/joints is considered, subjected to a moving concentrated force and a series of concentrated forces, respectively. In two different configurations, the beam is equipped with one TMD and three TMDs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ouyang H (2011) Moving-load dynamic problems: a tutorial (with a brief overview). Mech Syst Signal Process 25:2039–2060

    Article  ADS  Google Scholar 

  2. Fryba L (1972) Vibration of solids and structures under moving loads. Noordhoff International Publishing, Groningen

    Book  MATH  Google Scholar 

  3. Adam C, Heuer R, Ziegler F (2012) Reliable dynamic analysis of an uncertain compound bridge under traffic loads. Acta Mech 223:1567–1581

    Article  MathSciNet  MATH  Google Scholar 

  4. Adam C, Salcher P (2014) Dynamic effect of high-speed trains on simple bridge structures. Struct Eng Mech 51:581–599

    Article  Google Scholar 

  5. Salcher P, Pradlwarter H, Adam C (2016) Reliability assessment of railway bridges subjected to high-speed trains considering the effects of seasonal temperature changes. Eng Struct 126:712–724

    Article  Google Scholar 

  6. Johansson C, Pacoste C, Karoumi R (2013) Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads. Comput Struct 119:85–94

    Article  Google Scholar 

  7. Zhu XQ, Law SS (2006) Moving load identification on multi-span continuous bridges with elastic bearings. Mech Syst Signal Process 20:1759–1782

    Article  ADS  Google Scholar 

  8. Chan THT, Ashebo DB (2006) Theoretical study of moving force identification on continuous bridges. J Sound Vib 295:870–883

    Article  ADS  Google Scholar 

  9. Dugush YA, Eisenberger M (2002) Vibrations of non-uniform continuous beams under moving loads. J Sound Vib 254(5):911–926

    Article  ADS  Google Scholar 

  10. Henchi K, Fafard M, Dhatt G, Talbot M (1997) Dynamic behaviour of multi-span beams under moving loads. J Sound Vib 199(1):33–50

    Article  ADS  MATH  Google Scholar 

  11. Greco A, Santini A (2002) Dynamic response of a flexural non-classically damped continuous beam under moving loadings. Comput Struct 80:1945–1953

    Article  Google Scholar 

  12. Martínez-Castro AE, Museros P, Castillo-Linares A (2006) Semi-analytic solution in the time domain for non-uniform multi-span Bernoulli–Euler beams traversed by moving loads. J Sound Vib 294:278–297

    Article  ADS  Google Scholar 

  13. Zheng DY, Cheung YK, Au FTK, Cheng YS (1998) Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. J Sound Vib 212(3):455–467

    Article  ADS  MATH  Google Scholar 

  14. De Salvo V, Muscolino G, Palmeri A (2010) A substructure approach tailored to the dynamic analysis of multi-span continuous beams under moving loads. J Sound Vib 329:3101–3120

    Article  ADS  Google Scholar 

  15. Zhu XQ, Law SS (2001) Precise time-step integration for the dynamic response of a continuous beam under moving loads. J Sound Vib 240(5):962–970

    Article  ADS  Google Scholar 

  16. Xu H, Li WL (2008) Dynamic behavior of multi-span bridges under moving loads with focusing on the effect of the coupling conditions between spans. J Sound Vib 312:736–753

    Article  ADS  Google Scholar 

  17. Museros P, Martinez-Rodrigo MD (2007) Vibration control of simply supported beams under moving loads using fluid viscous dampers. J Sound Vib 300:292–315

    Article  ADS  Google Scholar 

  18. Samani FS, Pellicano F (2009) Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers. J Sound Vib 325:742–754

    Article  ADS  Google Scholar 

  19. Lee HP (1994) Dynamic response of a beam with intermediate point constraints subjected to a moving load. J Sound Vib 171(3):361–368

    Article  ADS  MATH  Google Scholar 

  20. Lee HP, Ng TY (1994) Dynamic response of a cracked beam subject to a moving load. Acta Mech 106:221–230

    Article  MATH  Google Scholar 

  21. Wu JJ, Whittaker AR, Cartmell MP (2000) The use of finite element techniques for calculating the dynamic response of structures to moving loads. Comput Struct 78:789–799

    Article  Google Scholar 

  22. Rieker JR, Lin Y-H, Trethewey MW (1996) Discretization considerations in moving load finite element beam models. Finite Elem Anal Des 21:129–144

    Article  MATH  Google Scholar 

  23. Sarvestan V, Mirdamadi HR, Ghayour M, Mokhtari A (2015) Spectral finite element for vibration analysis of cracked viscoelastic Euler–Bernoulli beam subjected to moving load. Acta Mech 226:4259–4280

    Article  MathSciNet  MATH  Google Scholar 

  24. Azizi N, Saadatpour MM, Mahzoon M (2012) Using spectral element method for analyzing continuous beams and bridges subjected to a moving load. Appl Math Model 36:3580–3592

    Article  MathSciNet  MATH  Google Scholar 

  25. Sun L (2002) A closed-form solution of beam on viscoelastic subgrade subjected to moving loads. Comput Struct 80:1–8

    Article  Google Scholar 

  26. Chen YH, Chen DS (2004) Timoshenko beam with tuned mass dampers to moving loads. J Bridge Eng 9:167–177

    Article  Google Scholar 

  27. Lin CC, Wang JF, Chen BL (2005) Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers. J Bridge Eng 10:398–414

    Article  Google Scholar 

  28. Miguel LFF, Lopez RH, Torii AJ, Miguel LFF, Beck AT (2016) Robust design optimization of TMDs in vehicle–bridge coupled vibration problems. Eng Struct 126:703–711

    Article  Google Scholar 

  29. Failla G (2014) On the dynamics of viscoelastic discontinuous beams. Mech Res Commun 60:52–63

    Article  Google Scholar 

  30. Falsone G (2002) The use of generalised functions in the discontinuous beam bending differential equation. Int J Eng Educ 18(3):337–343

    Google Scholar 

  31. Yavari A, Sarkani S, Moyer ET (2000) On applications of generalized functions to beam bending problems. Int J Solids Struct 37:5675–5705

    Article  MathSciNet  MATH  Google Scholar 

  32. Biondi B, Caddemi S (2007) Euler–Bernoulli beams with multiple singularities in the flexural stiffness. Eur J Mech A/Solids 26(5):789–809

    Article  MathSciNet  MATH  Google Scholar 

  33. Caddemi S, Morassi A (2013) Multi-cracked Euler–Bernoulli beams: mathematical modeling and exact solutions. Int J Solids Struct 50(6):944–956

    Article  Google Scholar 

  34. Caddemi S, Caliò I (2014) Exact reconstruction of multiple concentrated damages on beams. Acta Mech 225(11):3137–3156

    Article  MathSciNet  MATH  Google Scholar 

  35. Failla G, Santini A (2008) A solution method for Euler–Bernoulli vibrating discontinuous beams. Mech Res Commun 35:517–529

    Article  MathSciNet  MATH  Google Scholar 

  36. Failla G (2016) An exact generalised function approach to frequency response analysis of beams and plane frames with the inclusion of viscoelastic damping. J Sound Vib 360:171–202

    Article  ADS  Google Scholar 

  37. Di Lorenzo S, Di Paola M, Failla G, Pirrotta A (2016) On the moving load problem in Euler–Bernoulli uniform beams with viscoelastic supports and joints. Acta Mech. doi:10.1007/s00707-016-1739-6

    Google Scholar 

  38. Sing MP, Moreschi LM (2002) Optimal placement of dampers for passive response control. Earth Eng Struct Dyn 31:955–976

    Article  Google Scholar 

  39. Ou JP, Long X, Li QS (2007) Seismic response analysis of structures with velocity-dependent dampers. J Constr Steel Res 63:628–638

    Article  Google Scholar 

  40. Xu YL, Zhang WS (2001) Modal analysis and seismic response of steel frames with connection dampers. Eng Struct 23:385–396

    Article  Google Scholar 

  41. Kawashima S, Fujimoto T (1984) Vibration analysis of frames with semi-rigid connections. Comput Struct 19:85–92

    Article  MATH  Google Scholar 

  42. Sekulovic M, Salatic R, Nefovska M (2002) Dynamic analysis of steel frames with flexible connections. Comput Struct 80:935–955

    Article  Google Scholar 

  43. Wang J, Qiao P (2007) Vibration of beams with arbitrary discontinuities and boundary conditions. J Sound Vib 308:12–27

    Article  ADS  Google Scholar 

  44. Veletsos AS, Ventura CE (1986) Modal analysis of non-classically damped linear systems. Earthq Eng Struct Dyn 14:217–243

    Article  Google Scholar 

  45. Oliveto G, Santini A, Tripodi E (1997) Complex modal analysis of a flexural vibrating beam with viscous end conditions. J Sound Vib 200(3):327–345

    Article  ADS  MATH  Google Scholar 

  46. Failla G (2011) Closed-form solutions for Euler–Bernoulli arbitrary discontinuous beams. Arch Appl Mech 81:605–628

    Article  MATH  Google Scholar 

  47. Den Hartog JP (1962) Mechanical vibrations. McGraw-Hill, New York

    MATH  Google Scholar 

  48. ADINA Version 8.2. Watertown: ADINA R & D Inc. (2004)

  49. Yang YB, Yau JD, Wu YS (2004) Vehicle–bridge interaction dynamics: with applications to high-speed railways. World Scientific Publishing, Singapore

    Book  Google Scholar 

  50. Museros P, Alarcon C (2007) Influence of the bending mode on the response of high-speed bridges at resonance. J Struct Eng 131:405–415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Pirrotta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

This Appendix reports closed-form analytical expressions for all terms in Eqs. (10) and (11), as derived in Ref. [36].

Terms of matrix \({\varvec{\Omega}}\left( x \right)\) in Eq. (10) are given as

$$\begin{array}{*{20}l} {\Omega_{\psi 1} \left( x \right) = {\text{e}}^{ - \omega x} ;} \hfill & {\Omega_{\psi 2} \left( x \right) = {\text{e}}^{\omega x} ;} \hfill & {\Omega_{\psi 3} \left( x \right) = \cos \left( {\omega x} \right);} \hfill & {\Omega_{\psi 4} \left( x \right) = \sin \left( {\omega x} \right)} \hfill \\ {\Omega_{\vartheta 1} \left( x \right) = - \omega {\text{e}}^{ - \omega x} ;} \hfill & {\Omega_{\vartheta 2} \left( x \right) = \omega {\text{e}}^{\omega x} ;} \hfill & {\Omega_{\vartheta 3} \left( x \right) = - \omega \sin \left( {\omega x} \right);} \hfill & {\Omega_{\vartheta 4} \left( x \right) = \omega \cos \left( {\omega x} \right)} \hfill \\ {\Omega_{\mu 1} \left( x \right) = - \omega^{2} {\text{e}}^{ - \omega x} ;} \hfill & {\Omega_{\mu 2} \left( x \right) = - \omega^{2} {\text{e}}^{\omega x} ;} \hfill & {\Omega_{\mu 3} \left( x \right) = \omega^{2} \cos \left( {\omega x} \right);} \hfill & {\Omega_{\mu 4} \left( x \right) = \omega^{2} \sin \left( {\omega x} \right)} \hfill \\ {\Omega_{\chi 1} \left( x \right) = \omega^{3} {\text{e}}^{ - \omega x} ; \, } \hfill & {\Omega_{\chi 2} \left( x \right) = - \omega^{3} {\text{e}}^{\omega x} ; \, } \hfill & {\Omega_{\chi 3} \left( x \right) = - \omega^{3} \sin \left( {\omega x} \right); \, } \hfill & {\Omega_{\chi 4} \left( x \right) = \omega^{3} \cos \left( {\omega x} \right)} \hfill \\ \end{array}$$
(35a–p)

Particular integrals \({\mathbf{J}}^{\left( p \right)} \left( {x,x_{j} } \right)\) for a point force p = 1 at \(x = x_{j}\)

$$J_{\psi }^{\left( p \right)} \left( {x,x_{j} } \right) = 2^{ - 1} \omega^{{{{ - 3} \mathord{\left/ {\vphantom {{ - 3} 2}} \right. \kern-0pt} 2}}} \left[ {\sinh \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right) - { \sin }\left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(36)
$$J_{\vartheta }^{\left( p \right)} \left( {x,x_{j} } \right) = 2^{ - 1} \omega^{ - 1} \left[ {\cosh \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right) - \cos \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(37)
$$J_{\mu }^{\left( p \right)} \left( {x,x_{j} } \right) = - 2^{ - 1} \omega^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} \left[ {\sinh \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right) + \sin \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(38)
$$J_{\chi }^{\left( p \right)} \left( {x,x_{j} } \right) = - 2^{ - 1} \left[ {\cosh \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right) + \cos \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(39)

Particular integrals \({\mathbf{J}}^{{\left( {\Delta\uptheta} \right)}} \left( {x,x_{j} } \right)\) for a relative rotation \(\Delta\uptheta = 1\) at \(x = x_{j}\)

$$J_{\psi }^{{\left( {\Delta\uptheta} \right)}} \left( {x,x_{j} } \right) = 2^{ - 1} \omega^{{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-0pt} 2}}} \left[ {\sinh \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right) + \sin \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(40)
$$J_{\vartheta }^{{\left( {\Delta\uptheta} \right)}} \left( {x,x_{j} } \right) = 2^{ - 1} \left[ {\cosh \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right) + \cos \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(41)
$$J_{\mu }^{{\left( {\Delta\uptheta} \right)}} \left( {x,x_{j} } \right) = - 2^{ - 1} \omega^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \left[ {\sinh \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right) - \sin \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(42)
$$J_{\chi }^{{\left( {\Delta\uptheta} \right)}} \left( {x,x_{j} } \right) = - 2^{ - 1} \omega \left[ {\cosh \left( {\sqrt \omega \left( {x - x_{0} } \right)} \right) - \cos \left( {\sqrt \omega \left( {x - x_{j} } \right)} \right)} \right]H\left( {x - x_{j} } \right)$$
(43)

The particular integrals are all continuous, except for \(x = x_{0}\) where appropriate, i.e.:

$$\begin{array}{*{20}c} {J_{\chi }^{\left( p \right)} \left( {x_{0}^{ + } ,x_{0} } \right) - J_{\chi }^{\left( p \right)} \left( {x_{0}^{ - } ,x_{0} } \right) = - 1} \\ {J_{\vartheta }^{{\left( {\Delta\uptheta} \right)}} \left( {x_{0}^{ + } ,x_{0} } \right) - J_{\vartheta }^{{\left( {\Delta\uptheta} \right)}} \left( {x_{0}^{ - } ,x_{0} } \right) = 1} \\ \end{array}$$
(44a,b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, C., Di Lorenzo, S., Failla, G. et al. On the moving load problem in beam structures equipped with tuned mass dampers. Meccanica 52, 3101–3115 (2017). https://doi.org/10.1007/s11012-016-0599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0599-4

Keywords

Navigation