Skip to main content
Log in

Mixed convection in a vertical annulus filled with porous material having time-periodic thermal boundary condition: steady-periodic regime

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An analytical solution for the problem of a fully developed laminar mixed convection flow in a vertical annulus filled with porous material is presented, where the outer surface of the inner cylinder is heated sinusoidally and the inner surface of outer cylinder is kept at a constant temperature. The solution is based on the assumption that both the velocity and temperature profile far from the annulus entrance do not change due to infinite length of the cylinders forming the annulus. Perturbation method is employed to solve the momentum and energy equations, the graphical interpretation reveals that the effect of the dimensionless frequency Ω of the sinusoidal wall heating on the absolute value of oscillatory term of the velocity is negligible in the range 0.5 ≤ Ω ≤ 2 for air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Radius of the inner cylinder

A(t):

Function of time

b :

Radius of the outer cylinder

Da :

Darcy number

f :

Fanning friction factor

g :

Gravitational acceleration

Gr :

Grashof number

i :

Imaginary unit, \(\sqrt { - 1}\)

I n :

Modified Bessel function of first kind of order n

K n :

Modified Bessel function of second kind of order n

k :

Thermal conductivity

K :

Permeability of the porous medium

n :

Integer

p :

Pressure

P :

Difference between the pressure and the hydrostatic pressure

Pr :

Prandtl number

q :

Heat flux per unit area

r :

Dimensionless radial coordinate

R :

Dimensional radial coordinate

Re :

Reynolds number

e :

Real part of a complex number

t :

Time

T :

Temperature

T 0 :

Reference temperature in the annular section defined in Eq. (5)

T 1 :

Time average temperature of the outer surface of the inner cylinder

u :

Dimensionless velocity

u *, u * a , u * b :

Dimensionless complex-valued function defined in Eqs. (19) and (23)

\(\overrightarrow {U}\) :

Fluid velocity

U :

X-Component of the fluid velocity

U o :

Mean fluid velocity in an annular section

X :

Vertical axial coordinate

α :

Effective thermal diffusivity

β :

Volumetric coefficient of thermal expansion

ΔT :

Amplitude of the wall temperature oscillations

λ :

Dimensionless parameter defined in Eq. (10)

λ * a , λ * b :

Dimensionless complex-valued function defined in Eq. (23)

η :

Dimensionless complex-valued function defined in Eq. (10)

θ :

Dimensionless temperature

θ * a , θ * b :

Dimensionless complex-valued function

μ :

Dynamic viscosity

ν :

Kinematic viscosity

ν eff :

Effective kinematic viscosity

ξ :

Dimensionless parameter defined in Eq. (10)

ρ :

Density

ρ 0 :

Density at T = T 0

τ w :

Average wall shear stress defined in Eq. (40)

ω :

Frequency of the wall temperature oscillation

Ω:

Dimensionless frequency

γ :

Ratio of kinematics viscosity defined in Eq. (10)

References

  1. Alkam MK, Al-Nimr MA (2001) Transient flow hydrodynamics in circular channels partially filled with a porous material. Heat Mass Transf 37:133–138

    Article  ADS  Google Scholar 

  2. Al-Nimr MA, Alkam MK (1998) Unsteady non-Darcian fluid flow in parallel-plates channels partially filled with porous materials. Heat Mass Transf 33:315–318

    Article  ADS  MATH  Google Scholar 

  3. Al-Zahrani MS, Kiwan S (2009) Mixed convection heat transfer in the annulus between two concentric vertical cylinders using porous layers. Transp Porous Med 76:391–405

    Article  Google Scholar 

  4. Antohe BV, Lage JL (1996) Amplitude effect on convection induced by time periodic boundary conditions. Int J Heat Mass Transf 39:1121–1133

    Article  Google Scholar 

  5. Barletta A, Zanchini E (2003) Time-periodic laminar mixed convection in an inclined channel. Int J Heat Mass Transf 46:551–563

    Article  MATH  Google Scholar 

  6. Barletta A, Rossi di Schio E (2004) Mixed convection flow in a vertical circular duct with time-periodic boundary conditions: steady-periodic regime. Int J Heat Mass Transf 47:3187–3195

    Article  MATH  Google Scholar 

  7. Barletta A, Magyari E, Pop I, Storesletten L (2008) Buoyant flow with viscous heating in a vertical circular duct filled with a porous medium. Transp Porous Med 74:133–151

    Article  MathSciNet  Google Scholar 

  8. Cheng P (1978) Heat transfer in geothermal systems. Adv Heat Transf 4:1–105

    Google Scholar 

  9. Chung PM, Anderson AD (1961) Unsteady laminar free convection. ASME J Heat Mass Transf 83:473–478

    Article  Google Scholar 

  10. Ingham DB, Pop I (eds) (1998) Transport phenomena in porous media. Pergamon, Oxford

    MATH  Google Scholar 

  11. Jha BK, Ajibade AO, Daramola D (2015) Mixed convection flow in a vertical tube filled with porous material with time periodic boundary condition: steady-periodic regime. Afrika Matematika 26(3):529–543

    Article  MathSciNet  MATH  Google Scholar 

  12. Du J-H, Wang B-X (1999) Mixed convection in porous media between vertical concentric cylinder. Heat Transfer-Asian Res 28(2):95–101

    Article  Google Scholar 

  13. Jasim NM (2010) Free convection in an inclined concentric annular square cavities filled with porous medium and heated by non-uniform temperature. Al-khwarizim Eng J 6(3):45–60

    Google Scholar 

  14. Kaurangini ML, Jha BK (2010) Mixed convection flow in a vertical annulus filled with porous material having constant porosity. J Phys Sci Innov 2:44–56

    Google Scholar 

  15. Kazmierczak M, Chinoda Z (1992) Buoyancy-driven flow in an enclosure with time periodic boundary conditions. Int J Heat Mass Transf 35:1507–1518

    Article  MATH  Google Scholar 

  16. Khadrawi AF, Al-Nimr MA (2005) The effect of the local inertial term on the transient free convection from a vertical plate inserted in a semi-infinite domain partially filled with porous material. Transp Porous Med. 59:139–153

    Article  Google Scholar 

  17. Khadrawi AF, Tahat MS, Al-Nimr MA (2005) Validation of the thermal equilibrium assumption in periodic natural convection in a porous domains. Int J Thermophys 26(5):1633–1649

    Article  ADS  Google Scholar 

  18. Kou HS, Huang DK (1997) Fully developed laminar mixed convection through a vertical annular duct filled with porous media. Int Commun Heat Mass Transf 24:99–110

    Article  Google Scholar 

  19. Kwak HS, Kvwahara JM, Hyun JM (1998) Resonant enhancement of natural convection heat transfer in a square enclosure. Int J Heat Mass Transf 41:2837–2846

    Article  MATH  Google Scholar 

  20. Lage JL, Bejan A (1993) The resonance of natural convection in an enclosure heated periodically from the side. Int J Heat Mass Transf 36:2027–2038

    Article  MATH  Google Scholar 

  21. Mishra AK, Jha BK, Singh AK (2001) Mixed convection in a vertical annulus filled with a porous matrix. Thermal systems and Heat transfer. In: Proceeding of third national conference on thermal systems, Departments of Mech. Eng. I.T, B.H.U: Varanasi INDIA

  22. Muralidhar K (1989) Mixed convection flow in a saturated porous annulus. Int J Heat Mass Transf 32:881–888

    Article  Google Scholar 

  23. Nanda RJ, Sharma VP (1963) Free convection laminar boundary layer in oscillatory flow. J Fluid Mech 15:419–428

    Article  ADS  MATH  Google Scholar 

  24. Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  25. Parang M, Keyhani M (1987) Boundary effect in laminar mixed-convection flow through an annular porous medium. ASME J Heat Transf 109:1039–1041

    Article  Google Scholar 

  26. Sankar M, Youngyong P, Lopez JM, Younghae Do (2011) Numerical study of natural convection in a vertical porous annulus with discrete heating. Int J Heat Mass Transf 54:1493–1505

    Article  MATH  Google Scholar 

  27. Sparrow EM, Gregg JL (1960) Newly quasi-steady free-convection heat transfer in gases. J Heat Mass Transf Trans ASME 82:258–260

    Article  Google Scholar 

  28. Vafai K (ed) (2000) Handbook of Porous media. Marcel Dekker, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Daramola.

Appendix

Appendix

$$D_{1} = \frac{1}{{\sqrt {\gamma Da} }}\quad D_{2} = \sqrt {i\Omega \Pr } ,\quad D_{3} = \sqrt {\left( {i\Omega + D_{1}^{2} } \right)}$$
$$Z_{1} = \left( {\lambda_{0} I_{1} \left( {\lambda_{0} D_{1} } \right) - I_{1} \left( {D_{1} } \right)} \right)\left( {K_{0} \left( {\lambda_{0} D_{1} } \right) - K_{0} \left( {D_{1} } \right)} \right) - \left( {I_{0} \left( {D_{1} } \right) - I_{0} \left( {\lambda_{0} D_{1} } \right)} \right)\left( {\lambda_{0} K_{1} \left( {\lambda_{0} D_{1} } \right) - K_{1} \left( {D_{1} } \right)} \right)$$
$$Z_{2} = \frac{{I_{0} \left( {\chi_{0} D_{2} } \right)\left( {\chi_{0} K_{1} \left( {\chi_{0} D_{2} } \right) - K_{1} \left( {D_{2} } \right)} \right) + K_{0} \left( {\chi_{0} D_{2} } \right)\left( {\chi_{0} I_{1} \left( {\chi_{0} D_{2} } \right) - I_{1} \left( {D_{2} } \right)} \right)}}{{\left( {\left( {D_{3}^{2} - D_{2}^{2} } \right)} \right)D_{2} \left( {I_{0} \left( {\chi_{0} D_{2} } \right)K_{0} (D_{2} ) - I_{0} \left( {D_{2} } \right)K_{0} (\chi_{0} D_{2} )} \right)}}$$
$$Z_{3} = \frac{{\left( {I_{0} \left( {\chi_{0} D_{3} } \right)K_{0} (D_{3} ) - I_{0} \left( {D_{3} } \right)K_{0} (\chi_{0} D_{3} )} \right)}}{{D_{3}^{2} \left( {\chi_{0}^{2} - 1} \right)\left( {I_{0} \left( {\chi_{0} D_{3} } \right)K_{0} (D_{3} ) - I_{0} \left( {D_{3} } \right)K_{0} (\chi_{0} D_{3} )} \right) + 2\left( {I_{1} \left( {D_{3} } \right) - \chi_{0} I_{1} (\chi_{0} D_{3} )} \right)\left( {K_{0} \left( {D_{3} } \right) - K_{0} (\chi_{0} D_{3} )} \right)}}$$
$$Z_{4\,} \,\, = \left( {\,D_{2}^{2} - D_{3}^{2} } \right)$$
$$Z_{5} \, = \frac{{I_{0} \left( {\chi_{0} \,D_{3} } \right)\left( {\chi_{0} \,K_{1} \left( {\chi_{0} \,D_{3} } \right)\, - K_{1} \left( {\,D_{3} } \right)\,} \right)\, + K_{0} \left( {\chi_{0} \,D_{3} } \right)\left( {\chi_{0} \,I_{1} \left( {\chi_{0} \,D_{3} } \right)\, - I_{1} \left( {\,D_{3} } \right)\,} \right)\,}}{{Z_{4} \left( {\left( {D_{3}^{2} \left( {\chi_{0}^{2} - 1} \right)\left( {I_{0} \left( {\chi_{0} \,D_{3} } \right)K_{0} (D_{3} )\, - \,I_{0} \left( {D_{3} } \right)K_{0} (\chi_{0} \,D_{3} )} \right)\, + 2\left( {I_{1} \left( {D_{3} } \right) - \chi_{0} I_{1} (\chi_{0} \,D_{3} )} \right)\left( {K_{0} \left( {D_{3} } \right) - K_{0} (\chi_{0} \,D_{3} )} \right)} \right)} \right)}}\,\,\,$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Daramola, D. & Ajibade, A.O. Mixed convection in a vertical annulus filled with porous material having time-periodic thermal boundary condition: steady-periodic regime. Meccanica 51, 1685–1698 (2016). https://doi.org/10.1007/s11012-015-0328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0328-4

Keywords

Navigation