Skip to main content
Log in

Mixed convection flow in a vertical tube filled with porous material with time-periodic boundary condition: steady-periodic regime

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

An analytical study is reported on the hydrodynamic and thermal behaviour of a fully developed mixed convective flow in a vertical tube filled with isotropic porous material having time-periodic boundary condition. The analysis is performed for fully developed parallel flow and steady-periodic regime. The momentum and energy equations presented in dimensionless form along with the constraint equations for the present physical situation are solved exactly. Closed form solution are expressed in terms of modified Bessel function of first kind. The solution obtained is graphically represented and the effect of the Prandtl number \(Pr\), the dimensionless frequency \(\Omega \), and the Darcy number \(Da\) on the flow is investigated. It is discovered that velocity is maximum at two different locations in the flow domain, one near the surface of the tube and another at the axis of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A(t)\) :

Function of time

\(Da\) :

Darcy number

\(f\) :

Fanning friction factor

\(g\) :

Gravitational acceleration

\(Gr\) :

Grashof number

\(i\) :

Imaginary unit

\(I_n\) :

Modified Bessel function of first kind and order n.

\(k\) :

Thermal conductivity

\(K\) :

Permeability of the medium

\(n\) :

Integer number

\(p\) :

Pressure

\(P\) :

Difference between the pressure and the hydrostatic pressure

\(Pr\) :

Prandtl number

\(R\) :

Radial coordinate

\(Re\) :

Reynolds number

\(\mathfrak {R}\) :

Real part of a complex number

\(t\) :

Time

\(T\) :

Temperature

\(T_0\) :

Mean temperature in a duct section

\(T_1\) :

Mean wall temperature

\(u\) :

Dimensionless velocity

\(u^*\) :

Dimensionless complex-valued function

\(u^*_a, u^*_b\) :

Dimensionless complex-valued function

\(U\) :

Fluid velocity

\(X \) :

Longitudinal coordinate

\(\propto \) :

Thermal diffusivity

\(\beta \) :

Volumetric coefficient of thermal expansion

\(\Delta T\) :

Amplitude of the wall temperature oscillations

\(\Gamma \) :

=\(\dfrac{\nu _{eff}}{\nu }\)

\(\lambda \) :

Dimensionless parameter

\(\lambda ^*\) :

Dimensionless complex-valued function

\(\lambda _a^*,\lambda _b^*\) :

Dimensionless complex-valued function

\(\eta \) :

Dimensionless parameter

\(\theta \) :

Dimensionless temperature

\(\theta _a^*,\theta _b^*\) :

Dimensionless complex-valued function

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\nu _{eff}\) :

Effective kinematic viscosity

\(\Phi \) :

Dimensionless heat flux

\(\Phi _a^*,\phi _b^*\) :

Dimensionless complex value function

\(\varrho \) :

Mass density

\(\varrho _0\) :

Mass density for \(T=T_0\)

\(\tau _w\) :

Average wall shear stress

\(\omega \) :

Frequency of the wall temperature oscillation

\(\Omega \) :

Dimensionless frequency

References

  1. Sparrow, E.M., Gregg, J.L.: Newly quasi-steady free-convection heat transfer in gases. J. Heat Mass Transf. Trans. ASME Ser. 82, 258–260 (1960)

    Article  Google Scholar 

  2. Chung, P.M., Anderson, A.D.: Unsteady laminar free convection. ASME J. Heat Mass Transf. 83, 473–478 (1961)

    Article  Google Scholar 

  3. Nanda, R.J., Sharma, V.P.: Free convection laminar boundary layer in oscillatory flow. J. Fluid Mech. 15, 419–428 (1963)

    Article  MATH  Google Scholar 

  4. Bar-Cohen, A., Rohsenow, W.M.: Thermally optimum spacing of vertical natural convection cooled parallel plates. ASME J. Heat Transf. 106, 116–123 (1984)

    Article  Google Scholar 

  5. Wang, C.Y.: Free convection between vertical plates with periodic heat input. ASME J. Heat Transf. 110, 508–511 (1988)

    Article  Google Scholar 

  6. Kazmierczak, M., Chinoda, Z.: Buoyancy-driven flow in an enclosure with time periodic boundary conditions. Int. J. Heat Mass Transf. 35, 1507–1518 (1992)

    Article  MATH  Google Scholar 

  7. Kwak, H.S., Kvwahara, J.M., Hyun, J.M.: Resonant enhancement of natural convection heat transfer in a square enclosure. Int. J. Heat Mass Transf. 41, 2837–2846 (1998)

    Article  MATH  Google Scholar 

  8. Antohe, B.V., Lage, J.L.: Amplitude effect on convection induced by time periodic boundary conditions. Int. J. Heat Mass Transf. 39, 1121–1133 (1996)

    Article  Google Scholar 

  9. Lage, J.L., Bejan, A.: The resonance of natural convection in an enclosure heated periodically from the side. Int. J. Heat Mass Transf. 36, 2027–2038 (1993)

    Article  MATH  Google Scholar 

  10. Barletta, A., Zanchini, E.: Time-periodic laminar mixed convection in an inclined channel. Int. J. Heat Mass Transf. 46, 551–563 (2002)

    Article  Google Scholar 

  11. Barletta, A., Rossi di Schio, E.: Mixed convection flow in a vertical circular duct with time-periodic boundary conditions: steady-periodic regime. Int. J. Heat Mass Transf. 47, 3187–3195 (2004)

    Article  MATH  Google Scholar 

  12. Nawaf, S.H.: Natural convection in a square porous cavity with an oscillating wall temperature. Arab. J. Sci. Eng. 31(1b), 35–46 (2006)

    Google Scholar 

  13. Arash, K., Afrand, M., Bazofti, M.M.: Periodic mixed convection of a nanofluid in a cavity with toplid sinusoidal motion. World Acad. Sci. Eng. Technol. 47, 11–29 (2010)

    Google Scholar 

  14. Ingham, D.B., Pop, I. (eds.): Transport Phenomena in Porous Media. Pergamon, Oxford (1998)

    MATH  Google Scholar 

  15. Neild, D.A., Bejan, A.: Convection in Porous Media, 2nd edn. Springer, New York (1999)

    Book  Google Scholar 

  16. Pop, I., Ingham, D.B.: Convective Heat Transfer, Mathematical and Computational Modelling of Viscous fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  17. Vafai, K. (ed.): Handbook of Porous Media. Marcel Dekker, New York (2000)

    MATH  Google Scholar 

  18. Kou, H.S., Lu, K.T.: The analytical solution of mixed convection in a vertical channel embedded in a porous media with asymmetric wall heat fluxes. Int. J. Heat Mass Transf. 20, 737–750 (1993)

    Article  Google Scholar 

  19. Jha, B.K.: Free-convection flow through an annular porous medium. Heat Mass Transf. 41, 675–679 (2005)

    Article  Google Scholar 

  20. Aung, W., Worku, G.: Theory of fully developed combined convection including flow reversal. ASME J. Heat Transf. 108, 485–488 (1986)

    Article  Google Scholar 

  21. Barletta, A., Zanchini, E.: On the choice of the reference temperature for fully-developed mixed convection in a vertical channel. Int. J. Heat Mass Transf. 42, 3169–3181 (1999)

    Google Scholar 

  22. Cheng, C.H., Kou, S.H., Huang, W.H.: Flow reversal and heat transfer of fully developed mixed convection in vertical channels. J. Thermophys. Heat Transf. 4, 375–383 (1990)

    Article  Google Scholar 

  23. Lavine, A.S.: Analysis of fully developed opposing mixed convection between inclined parallel plates. Warme-und Stoffubertragung 23, 249–257 (1988)

    Article  Google Scholar 

  24. Rossi di Schio, E., Celli, M., Pop, I.: Buoyant flow in a vertical fluid saturated porous annulus: Brinkman model. Int. J. Heat Mass Transf. 54(7–8), 1665–1670 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Daramola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, B.K., Ajibade, A.O. & Daramola, D. Mixed convection flow in a vertical tube filled with porous material with time-periodic boundary condition: steady-periodic regime. Afr. Mat. 26, 529–543 (2015). https://doi.org/10.1007/s13370-013-0222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-013-0222-y

Keywords

Mathematics Subject Classification

Navigation