Skip to main content
Log in

Modeling of variable thermal conductivity in a generalized thermoelastic infinitely long hollow cylinder

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this work, we consider the 1D problem for an infinitely long hollow cylinder in the context of the theory of generalized thermoelasticity with one relaxation time. The material is assumed to have variable thermal conductivity depending on the temperature. Laplace transform technique is used to solve the problem. The solution in the transformed domain is obtained by a direct approach. The inverse transforms are obtained using a numerical technique based on Fourier expansion. Numerical results are represented graphically and in table format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lord H, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  ADS  MATH  Google Scholar 

  2. Sherief H, Hamza F, El-Sayed A (2005) Theory of generalized micropolar thermo-elasticity and an axisymmetric half-space problem. J Therm Stress 28:409–437

    Article  MathSciNet  Google Scholar 

  3. Sherief H, Allam M, El-Hagary M (2011) Generalized theory of thermoviscoelasticity and a half-space problem. Int J Thermophys 32:1271–1295

    Article  ADS  Google Scholar 

  4. Sherief H, Hamza F, Saleh H (2004) The theory of generalized thermoelastic diffusion. Int J Eng Sci 42:591–608

    Article  MathSciNet  MATH  Google Scholar 

  5. Sherief H, Hussein E (2012) A mathematical model for short-time filtration in poroelastic media with thermal relaxation and two temperatures. Transp Porous Med 91:199–223

    Article  MathSciNet  Google Scholar 

  6. Sherief H, El-Maghraby N (2003) An internal penny-shaped crack in an infinite thermoelastic solid. J Therm Stress 26:333–352

    Article  Google Scholar 

  7. Sherief H, El-Maghraby N (2005) A mode-I crack problem for an infinite space in generalized thermoelasticity. J Therm Stress 28:465–484

    Article  Google Scholar 

  8. Sherief H, Ezzat M (1994) Solution of the generalized problem of thermoelasticity in the form of series of functions. J Therm Stress 17:75–95

    Article  MathSciNet  Google Scholar 

  9. Sherief H, Anwar M (1994) Two-dimensional generalized thermoelasticity problem for an infinitely long cylinder. J Therm Stress 17:213–227

    Article  Google Scholar 

  10. Sherief H, Anwar M (1992) Generalized thermoelasticity problem for a plate subjected to moving heat sources on both sides. J Therm Stress 15:489–505

    Article  ADS  Google Scholar 

  11. Sherief H, Saleh H (1998) A problem for an infinite thermoelastic body with a spherical cavity. Int J Eng Sci 36:473–487

    Article  MathSciNet  MATH  Google Scholar 

  12. Montanaro A (2011) On piezothermoelastic plates subject to prescribed boundary temperature. Meccanica 46:383–398

    Article  MathSciNet  MATH  Google Scholar 

  13. Chirita S (2012) On the final boundary value problems in linear thermoelasticity. Meccanica 47:2005–2011

    Article  MathSciNet  MATH  Google Scholar 

  14. Povstenko Y (2012) The Neumann boundary problem for axisymmetric fractional heat conduction equation in a solid with cylindrical hole and associated thermal stress. Meccanica 47:23–29

    Article  MathSciNet  MATH  Google Scholar 

  15. Sherief H, Khader S (2013) Propagation of discontinuities in electromagneto generalized thermoelasticity in cylindrical regions. Meccanica 48:2511–2523

    Article  MathSciNet  MATH  Google Scholar 

  16. Sherief H, Megahed F (1999) A two-dimensional thermoelasticity problem for a half-space subjected to heat sources. Int J Solids Struct 36:1369–1382

    Article  MathSciNet  MATH  Google Scholar 

  17. Sherief H, El-Maghraby N, Allam A (2013) Stochastic thermal shock problem in generalized thermoelasticity. Appl Math Model 37:762–775

    Article  MathSciNet  Google Scholar 

  18. Sherief H, El-Maghraby N (2013) Effect of body forces on a 2D generalized thermoelastic long cylinder. Comput Math Appl 66:1181–1191

    Article  Google Scholar 

  19. Sharma JN, Kumar S (2008) Lamb waves in micropolar thermoelastic solid plates immersed in liquid with varying temperature. Meccanica 44:305–319

    Article  MathSciNet  Google Scholar 

  20. Hetnarski R (1996) Thermal stresses I. North-Holland, Amsterdam

    Google Scholar 

  21. Sherief H, Abd El-Latief AM (2013) Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. Int J Mech Sci 74:185–189

    Article  Google Scholar 

  22. Mukhopadhyay S, Kumar R (2009) Solution of a problem of generalized thermoelasticity of an annular cylinder with variable material properties by finite difference method. Comput Methods Sci Technol 15:169–176

    Article  Google Scholar 

  23. Dhaliwal R, Sherief H (1980) Generalized thermoelasticity for anisotropic media. Quart Appl Math 33:1–8

    Article  MathSciNet  Google Scholar 

  24. Watson GN (1996) A treatise on the theory of bessel functions, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  25. Honig G, Hirdes U (1984) A method for the numerical inversion of the Laplace transform. J Comput Appl Math 10:113–132

    Article  MathSciNet  MATH  Google Scholar 

  26. Sherief H, Dhaliwal R (1981) A generalized one-dimensional thermal shock problem for small times. J Therm Stress 4:407–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany H. Sherief.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherief, H.H., Hamza, F.A. Modeling of variable thermal conductivity in a generalized thermoelastic infinitely long hollow cylinder. Meccanica 51, 551–558 (2016). https://doi.org/10.1007/s11012-015-0219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0219-8

Keywords

Navigation