Skip to main content
Log in

Chaotic vibration and resonance phenomena in a parametrically excited string-beam coupled system

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The nonlinear behavior of a string-beam coupled system subjected to parametric excitation is investigated in this paper. Using the method of multiple scales, a set of first order nonlinear differential equations are obtained. A numerical simulation is carried out to verify analytic predictions and to study the steady-state response, stable solutions and chaotic motions. The numerical results show that the system behavior includes multiple solutions, and jump phenomenon in the resonant frequency response curves. It is also shown that chaotic motions occur and the system parameters have different effects on the nonlinear response of the string-beam coupled system. Results are compared to previously published work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellakany AM, Tablia HA (2010) A numerical model for static and free vibration analysis of elastic composite beams with end restraint. Meccanica 45(4):463–474

    Article  MathSciNet  Google Scholar 

  2. Jun L, Hongxing H (2010) Free vibration analysis of axially loaded laminated composite beams based on higher-order shear deformation theory. Meccanica. doi:10.1007/s11012-010-9388-7

  3. Ellakany A (2008) Calculation of higher natural frequencies of simply supported elastic composite beams using Riccati matrix method. Meccanica 43(5):523–532

    Article  MATH  Google Scholar 

  4. Faravelli L, Fuggini C, Ubertini F (2010) Experimental study on hybrid control of multimodal cable vibrations. Meccanica. doi:10.1007/s11012-010-9364-2

  5. Attarnejad R, Shahba A (2010) Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution. Meccanica. doi:10.1007/s11012-010-9383-z

  6. Jasic N (2009) Numerical algorithm for natural frequencies computation of an axially moving beam model. Meccanica 44(6):687–695

    Article  MathSciNet  Google Scholar 

  7. Ahmed NU, Harbi H (1998) Mathematical analysis of dynamic models of suspension bridges. SIAM J Appl Math 58(3):853–874

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu MF, Change TP, Zeng DY (2010) The interactive vibration in a suspension bridge system under moving vehicle loads and vertical seismic excitations. Appl Math Model. doi:10.1016/j.apm.2010.07.005

    Google Scholar 

  9. Ding Z (2002) Nonlinear periodic oscillations in a suspension bridge system under periodic external aerodynamic forces. Nonlinear Anal 49:1079–1097

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding Z (2002) Multiple periodic oscillations in a nonlinear suspension bridge system. J Math Anal Appl 269:726–746

    Article  MathSciNet  MATH  Google Scholar 

  11. Darbek P, Necesal P (2003) Nonlinear scalar model of a suspension bridge: Existence of multiple periodic solutions. Nonlinearity 16:1165–1183

    Article  MathSciNet  ADS  Google Scholar 

  12. Caetano E, Cunha A, Gattulli V, Lepidi M (2008) Cable-deck dynamic interactions at the International Guadiana Bridge: on-site measurements and finite element modeling. Struct Control Health Monit 15(3), 237–264

    Article  Google Scholar 

  13. Vairo G (2008) A quasi-secant continuous model for the analysis of long-span cable-stayed bridges. Meccanica 43(2), 237–250

    Article  MATH  Google Scholar 

  14. Sun DK, Xu YL, Ko JM, Lin JH (1999) Fully coupled buffeting analysis of long-span cable-supported bridges: Formulation. J Sound Vib 228:569–588

    Article  ADS  Google Scholar 

  15. Domenico B, Grimaldi A (1985) Nonlinear behaviour of long-span cable-stayed bridges. Meccanica 20(4):303–313

    Article  Google Scholar 

  16. Fung RF, Lu LY, Huang SC (2002) Dynamic modeling and vibration analysis of a flexible cable-stayed beam structure. J Sound Vib 254(4):717–726

    Article  ADS  Google Scholar 

  17. Gattulli V, Lepidi M (2003) Nonlinear interactions in the planar dynamics of cable-stayed beam. Int J Solids Struct 40:4729–4748

    Article  MATH  Google Scholar 

  18. Gattulli V, Lepidi M, Macdonald JHG (2005) One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models. Int J Non-Linear Mech 40:571–588

    Article  MATH  Google Scholar 

  19. Cao DX, Zhang W (2008) Global bifurcations and chaotic dynamics for a string-beam coupled system. Chaos Solitons Fractals 37(3), 858–875

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Hegazy UH (2010) 3:1 Internal resonance of a string-beam coupled system with cubic nonlinearities. Commun Nonlinear Sci Numer Simul 15(12), 4219–4229

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Nayfeh AH (2001) Nonlinear interactions: analytical, computational, and experimental methods. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usama H. Hegazy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amer, Y.A., Hegazy, U.H. Chaotic vibration and resonance phenomena in a parametrically excited string-beam coupled system. Meccanica 47, 969–984 (2012). https://doi.org/10.1007/s11012-011-9490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9490-5

Keywords

Navigation