Skip to main content
Log in

An experimental testing of a simplified model of a ball bearing: stiffness calculation and defect simulation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents an experimental verification of a simplified model of a nonlinear stiffness ball bearing in both static and dynamic modes and testing its capabilities to simulate accurately fault’ effects.

Analytical model was developed using a different method comparatively to classical ones; the ball’s deformation is obtained without using Palmgren’s method. Modeling considers the balls scrolling in the cage and the effect of the load-rotating vector. Obtained formula allows introduction of defects characteristics under parametric forms.

These modifications were done in order to realize two objectives. The first one is to ameliorate ball bearings stiffness computing and to improve a more realistic simulation of dynamic behavior of a defective ball bearing. The second is to use obtained results in design and maintenance domain.

To verify experimentally the developed model of rigidity in both static and dynamic conditions, a number of compression tests were done on the ball bearings. This requires the specimen grips system adaptation of a mechanical universal testing machine to receive the non-usual specimen. A number of experimental simulations of the main faults are done on a testing bench to verify the defect model.

Results of defects simulation and model behavior in statics and dynamics are compared to experimental results. The developed model gives an acceptable similarity and it proves its simplicity and robustness. Both results were acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α::

angle, fault position,

β::

contact angle of ball with ring,

δ i ::

deflection/deformation,

δ T ::

total deformation,

γ::

train (cage) angular rotation,

ε::

radius of curve of ball’s housing,

ϕ::

angle /x, ball’s position /x

ϕ n ::

gap angle between two balls,

ν::

Poisson’s ratio,

θ::

inner ring tilt angle /z,

ω::

shaft angular or spin speed,

ω ca ::

cage rotational speed,

Δ::

fault size,

φ::

load angular position,

ψ::

angle, inner ring tilt angle /y

a::

half contact width,

b::

width,

c::

damping coefficient,

d b ::

ball diameter

d ou ::

outer ring diameter in ball housing,

d in ::

inner ring diameter in ball housing,

d i ::

displacement /R, X, y and Z,

d log ::

ball housing diameter,

d p ::

bearing pitch diameter,

h::

gap between rings,

h r ::

local deformation depth,

L c ::

contact width of the (ball/ring),

n::

ball number,

m::

loaded balls number, mass,

p::

ball bearing perimeter,

q 0::

maximum distributed loading,

q(p)::

distributed loading along perimeter p,

q(r)::

distributed loading along r,

q(z)::

distributed loading along z,

r m ::

bearing pitch radius,

A r ::

elementary area according to the axis r,

E i ::

Young’s module for (ball, ring),

F i ::

force /r, t, x, y & z,

F m ::

maximum force,

F r ::

radial force,

K rr ::

radial stiffness,

M::

mass, moment,

NR::

shaft speed

NT::

cage speed

NB::

ball speed

R, R b ::

ball radius,

R a ::

shaft radius,

R 1e ::

external inner ring radius,

R 2i ::

internal outer ring radius,

R log ::

ball’s housing radius,

R b ::

radius ball,

T::

cycle time,

W::

load rotating vector.

References

  1. Adams ML (2010) Analysis of rolling element bearing faults in rotating machinery: experiments, modelling, fault detection and diagnosis. Thesis for Doctor of Philosophy in the case Western Reserve University, August 2001. pp 12–13, 25–28, 50–53, 74–108, 147–183

  2. Adelin B Modélisation dynamique globale des boites de vitesses automobiles, thèse de doctorat à INSA de Lyon, 1997, n 97 ISAL 0084, pp 23–42

  3. Bouchrit H (2007) Analyse expérimentale et numérique des défauts de paliers à roulements pour le diagnostic des machines tournantes. Thèse de Magistère, Ecole Nationale Polytechnique El Harrach, Alger 2007. pp 28, 54–59, 96

  4. Barkov V, Barkova NA (1996) Non-linear signal models in vibroacoustic machine diagnostics

  5. Barkov V, Barkova NA (1999) The artificial intelligence systems for machine condition monitoring and diagnostics by vibration. In: Proceedings of the Saint Petersburg post-graduate institute of the Russian Federation power industry and vibration institute, USA, Saint Petersburg, vol 9

    Google Scholar 

  6. Barkov A, Barkova N Condition assessment and life prediction of rolling element bearings—Part 1, Vibroacoustical systems and technologies. St Petersburg, Russia, Edited by John S Mitchell, Contributing Editor for Sound & Vibration

  7. Bourgain L, Dart R, Bourgain J (1988) Machines tournantes et circuits pulsés. In: Applications Industrielles et médicales de l’analyse spectrale, pp 392–411, Dunod, Edition Bordas

    Google Scholar 

  8. Choi IS (1993) Simulation des mécanismes complexes en CMAO étude des non linéarités de comportement application aux boites de transmission de puissance d’hélicoptères Thèse de doctorat INSA de Lyon n 93. ISAL 0034:224

  9. De Mul JM, Vree JM, Maas DA (1989) Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction. Part I: General theory and application to ball bearings. Trans of the ASME J Trib, 111,149–155

    Google Scholar 

  10. Dougdag M, Ouali M (2001) Introduction de défauts dans l’étude des machines tournantes, thèse de magister, soutenu juin 2001, Université de Blida

  11. Dougdag M, Ouali M (2006) Modélisation d’un Roulement à billes et de ses Défauts Etude Comparative, XV colloque Vibrations Chocs & Bruit, Lyon France du 14, 15 et 16 Juin 2006

  12. Dougdag M, Ouali M (2008) The calculation of ball bearing nonlinear stiffness theoretical and experimental study with comparisons. J Eng Appl Sci 3(11):872–883

    Google Scholar 

  13. Eschmann P, Hasbargen L, Weigand K (1985) Ball and roller bearings: Theory, design and application. Oldenburg/Wiley, Munchen

    Google Scholar 

  14. Harris TA (1966) Rolling bearing analysis, 3rd edn. Lavoisier, 1991

    Google Scholar 

  15. Hong H, Liang M (2009) Fault severity assessment for rolling element bearings using the Lempel–Ziv complexity and continuous wavelet transform. J Sound Vib 320:452–468

    Article  ADS  Google Scholar 

  16. Konstantin-Hansen H, Herlufsen H (2010) Envelope and cepstrum analyses for machinery fault identification. Brüel & Kjaer, www.SandV.com, Sound & Vibration, May 2010, 1–10

  17. Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics. Springer, Berlin, p 250 (Translated by Theofanis Strouboulis, Mechanical Engineering Series Frederick F Ling)

    MATH  Google Scholar 

  18. Lim TC (1989) Vibration transmission through rolling element bearings in geared rotor systems. The Ohio State University, pp. 12–60

  19. Louf F (2003) Contact: théorie de Hertz. Site Internet: http://agregb1.dgm.enscachan.fr/Documents/TheorieTP/files/Contact.pdf, pp 1–7

  20. Moret M (1995) Roulements et butés à billes et à rouleaux. Techniques de l’ingénieur, vol B5-I, Août-1995

  21. Muthukumarasamy A, Ganeriwala S (2009) Diagnosis of rolling element bearing faults using envelope analysis http://www.spectraquest.com/. Tech Note, SpectraQuest Inc pp 1–11

  22. Palmgren A (1959) Ball and roller bearing engineering, 3rd edn. Burkank

    Google Scholar 

  23. Paz M (1985) Structural dynamics. Theory and computation, 2nd edn. van Nostrand Reinhold Company, New York, pp 389–397

    Google Scholar 

  24. Piersol AG, Paez TL (2010) Harris’ shock and vibration handbook, 6th edn. McGraw-Hill, New York (2010, 2002, 1995, 1988, 1976, 1961 by The McGraw-Hill, Printed in the United States of America, pp (16-8)–(16-24) and (24.14)–(24.16))

    Google Scholar 

  25. Rajab MD (1982) Modelling of the transmissibility through rolling-element bearing under radial and moment loads. PhD thesis. The Ohio state university. Columbus. Ohio

  26. Roque AA, Silva TAN, Calado JMF, Dias JCQ (2008) Rolling bearing fault detection and isolation—a didactic study. In: 4th WSEAS/IASME international conference on educational technologies (EDUTE’08). Corfu, Greece, October 26–28, 2008

    Google Scholar 

  27. Rubini R, Meneghetti U (2001) Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech Syst Signal Process 15(2):287–302. doi:10.1006/mssp.2000.1330. Available online at http://www.idealibrary.com

    Article  ADS  Google Scholar 

  28. Sawalhi N, Randall RB (2008) Simulating gear and bearing interactions in the presence of faults Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults. Mech Syst Signal Process 22:1924–1951

    Article  ADS  Google Scholar 

  29. Shigley JE, Mitchel LD (1983) Mechanical engineering design, 4th edn. McGraw-Hill, New York, pp 85–88, pp 484–514

    Google Scholar 

  30. Timoshenko S (1968) Résistance des matériaux. Théorie élémentaire et problèmes, vol I, collection Dunod technique, pp 2–19

  31. Tkachuk P, Strackeljan J (2010) A 3D-ball bearing model for simulation of axial load variations. In: The seventh international conference on condition monitoring and machinery failure prevention technologies

    Google Scholar 

  32. Yhland E (1992) A linear theory of vibrations caused by ball bearings elasticity in gear at moderate speed. Trans ASME J Tribol 154:348–359

    Article  Google Scholar 

  33. Young WB (1988) Dynamic modelling and experimental measurement of gear shaft and housing system. MS Thesis, The Ohio state university, Columbus, Ohio

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dougdag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougdag, M., Ouali, M., Boucherit, H. et al. An experimental testing of a simplified model of a ball bearing: stiffness calculation and defect simulation. Meccanica 47, 335–354 (2012). https://doi.org/10.1007/s11012-011-9434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9434-0

Keywords

Navigation