Skip to main content
Log in

Effect of density maximum of water on the stability of gravitactic convective motions in biothermal convection

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Microorganisms inhabit various natural environments and thrive in diverse ecosystems, including freshwater and marine bodies. Many of these microorganisms can swim and have a higher density than water, generating a vertical stratification of cell concentration that may lead to instability due to the buoyancy force. Biothermal convection refers to the convective motion that arises due to the combined effect of up-swimming microorganism and thermal gradients in a fluid medium. In the present work we investigate the onset of biothermal convection in a horizontal layer of cold water in the presence of the density inversion. This previously unexplored issue holds significance due to its potential applications in both natural and industrial contexts. We applied linear stability analysis to determine the critical thresholds at which instability initiates. To confirm these stability findings, we conducted numerical simulations using the finite volume method and compared them with the available experimental results in the case of penetrative convection. The critical threshold is shown to depend essentially upon the value of the density inversion parameter and the thermal Rayleigh number. Additionally, the linear stability analysis suggests the possible occurrence of Hopf bifurcations at the onset of motion.

Article Highlights

  • Biothermal convection stability depends on both the thermal Rayleigh number and the density inversion parameter.

  • The temperature stratification can either stabilize or destabilize, depending on the density inversion parameter.

  • An increase in the thermal Rayleigh number can introduces wave number transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Dehkharghani A, Waisbord N, Dunkel J, Guasto JS (2019) Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion. Proc Natl Acad Sci 116:11119–11124. https://doi.org/10.1073/pnas.1819613116

    Article  CAS  Google Scholar 

  2. Williams CR, Bees MA (2011) Photo-gyrotactic bioconvection. J Fluid Mech 678:41–86. https://doi.org/10.1017/jfm.2011.100

    Article  Google Scholar 

  3. Kuznetsov AV (2006) The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur J Mech B Fluids 25:223–233. https://doi.org/10.1016/j.euromechflu.2005.06.003

    Article  Google Scholar 

  4. Madigan M, Martinko J, Bender K, Buckley D, Stahl D (2014) Brock biology of microorganisms, 14th edn. Pearson, London

    Google Scholar 

  5. Williams CR, Bees MA (2014) Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii. Biotechnol Bioeng 111:320–335. https://doi.org/10.1002/bit.25023

    Article  CAS  Google Scholar 

  6. Bees MA (2020) Advances in bioconvection. Annu Rev Fluid Mech 52:449–476. https://doi.org/10.1146/annurev-fluid-010518-040558

    Article  Google Scholar 

  7. Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 24:313–358. https://doi.org/10.1146/annurev.fl.24.010192.001525

    Article  Google Scholar 

  8. Hill NA, Pedley TJ (2005) Bioconvection. Fluid Dyn Res 37:1–20. https://doi.org/10.1016/j.fluiddyn.2005.03.002

    Article  Google Scholar 

  9. Childress S, Levandowsky M, Spiegel EA (1975) Pattern formation in a suspension of swimming microorganisms: equations and stability theory. J Fluid Mech 63:591–613. https://doi.org/10.1017/S0022112075001577

    Article  Google Scholar 

  10. Kessler JO (1986) The external dynamics of swimming micro-organisms. Progress Psycol Res Biopress Bristol 4:257–307. https://doi.org/10.1017/S0022112086001131

    Article  Google Scholar 

  11. Pedley TJ, Hill NA, Kessler JO (1988) The growth of bioconvection patterns in a uniform suspension of gyrotactic micro–organisms. J Fluid Mech 195:223–237. https://doi.org/10.1017/S0022112088002393

    Article  CAS  Google Scholar 

  12. Ghorai S, Hill NA (1999) Development and stability of gyrotactic plumes in bioconvection. J Fluid Mech 400:1–31. https://doi.org/10.1017/S0022112099006473

    Article  Google Scholar 

  13. Ghorai S, Hill NA (2000) Wavelengths of gyrotactic plumes in bioconvection. Bull Math Biol 62:429–450. https://doi.org/10.1006/bulm.1999.0160

    Article  CAS  Google Scholar 

  14. Ghorai S, Hill NA (2000) Periodic arrays of gyrotactic plumes in bioconvection. Phys Fluids 12:5–22. https://doi.org/10.1063/1.870249

    Article  CAS  Google Scholar 

  15. Ghorai S, Hill NA (2002) Axisymmetric bioconvection in a cylinder. J Theor Biol 219:137–152. https://doi.org/10.1006/jtbi.2002.3077

    Article  CAS  Google Scholar 

  16. Ghorai S, Singh R, Hill NA (2015) Wavelength selection in gyrotactic bioconvection. Bull Math Biol 77:1166–1184. https://doi.org/10.1007/s11538-015-0081-9

    Article  CAS  Google Scholar 

  17. Bees M, Hill N (1997) Wavelengths of bioconvection patterns. J Exp Biol 200:1515–1526. https://doi.org/10.1242/jeb.200.10.1515

    Article  CAS  Google Scholar 

  18. Hopkins M, Fauci L (2002) A computational model of the collective fluid dynamics of motile micro-organisms. J Fluid Mech 455:149–174. https://doi.org/10.1017/S0022112001007339

    Article  Google Scholar 

  19. Vincent RV, Hill NA (1996) Bioconvection in a suspension of phototactic algae. J Fluid Mech 327:343–371. https://doi.org/10.1017/S0022112096008579

    Article  Google Scholar 

  20. Ghorai S, Hill NA (2005) Penetrative phototactic bioconvection. Phys Fluids 17:074101. https://doi.org/10.1063/1.1947807

    Article  CAS  Google Scholar 

  21. Abe T, Nakamura S, Kudo S (2017) Bioconvection induced by bacterial chemotaxis in a capillary assay. Biochem Biophys Res Commun 483:277–282. https://doi.org/10.1016/j.bbrc.2016.12.152

    Article  CAS  Google Scholar 

  22. Chakraborty S, Ivancic F, Solovchuk M, Sheu TWH (2018) Stability and dynamics of a chemotaxis system with deformed free-surface in a shallow chamber. Phys Fluids 30:071904. https://doi.org/10.1063/1.5038613

    Article  CAS  Google Scholar 

  23. Hillesdon AJ, Pedley TJ (1996) Bioconvection in suspensions of oxytactic bacteria: linear theory. J Fluid Mech 324:223–259. https://doi.org/10.1017/S0022112096007902

    Article  Google Scholar 

  24. Thakker CD, Ranade DR (2002) An alkalophilic Methanosarcina isolated from Lonar crater. Curr Sci 82:455–458

    Google Scholar 

  25. Saiki T, Kimura R, Arima K (1972) Isolation and characterization of extremely thermophilic bacteria from hot springs. Agric Biol Chem 36:2357–2366. https://doi.org/10.1080/00021369.1972.10860589

    Article  CAS  Google Scholar 

  26. Liu Y, Yao T, Jiao N, Kang S, Huang S, Li Q, Wang K, Liu X (2009) Culturable bacteria in glacial meltwater at 6,350 m on the East Rongbuk Glacier, Mount Everest. Extremophiles 13:89–99. https://doi.org/10.1007/s00792-008-0200-8

    Article  Google Scholar 

  27. Jansson J, Tas N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425. https://doi.org/10.1038/nrmicro3262

    Article  CAS  Google Scholar 

  28. Kuznetsov AV (2005) The onset of bioconvection in a suspension of gyrotactic microorganismsin a fluid layer of finite depth heated from below. Int Commun Heat Mass Transf 32:574–582. https://doi.org/10.1016/j.icheatmasstransfer.2004.10.021

    Article  Google Scholar 

  29. Kuznetsov AV (2005) Investigation of the onset of thermo-bioconvection in a suspension of oxytactic microorganisms in a shallow fluid layer heated from below. Theor Comput Fluid Dyn 19:287–299. https://doi.org/10.1007/s00162-005-0167-3

    Article  Google Scholar 

  30. Kuznetsov AV (2005) Thermo-bioconvection in a suspension of oxytactic bacteria. Int Commun Heat Mass Transf 32:991–999. https://doi.org/10.1016/j.icheatmasstransfer.2004.11.005

    Article  CAS  Google Scholar 

  31. Kuznetsov AV (2011) Bio-thermal convection induced by two different species of microorganisms. Int Commun Heat Mass Transf 38:548–553. https://doi.org/10.1016/j.icheatmasstransfer.2011.02.006

    Article  Google Scholar 

  32. Kuznetsov AV (2011) Nanofluid bio-thermal convection: simultaneous effects of gyrotactic and oxytactic micro-organisms. Fluid Dyn Res 43:055505. https://doi.org/10.1088/0169-5983/43/5/055505

    Article  Google Scholar 

  33. Kuznetsov AV (2013) The onset of bio-thermal convection induced by a combined effect of gyrotactic and oxytactic microorganisms. Int J Numer Methods Heat Fluid Flow 23:979–1000. https://doi.org/10.1108/HFF-09-2011-0178

    Article  Google Scholar 

  34. Kuznetsov AV (2016) Biothermal convection and nanofluid bioconvection. In: Johnson RW (ed) Handbook of fluid dynamics. CRC Press, Boca Raton

    Google Scholar 

  35. Nield DA, Kuznetsov AV (2006) The onset of bio-thermal convection in a suspension ofgyrotactic microorganisms in a fluid layer: oscillatory convection. Int J Therm Sci 45:990–997. https://doi.org/10.1016/j.ijthermalsci.2006.01.007

    Article  CAS  Google Scholar 

  36. Karimi A, Ardekani AM (2013) Gyrotactic bioconvection at pycnoclines. J Fluid Mech 773:245. https://doi.org/10.1017/jfm.2013.415

    Article  CAS  Google Scholar 

  37. Sommer T, Danza F, Berg J, Sengupta A et al (2017) Bacteria-induced mixing in natural waters. Geophys Res Lett 44:9424–9432. https://doi.org/10.1002/2017GL074868

    Article  Google Scholar 

  38. Steiner OS, Bouffard D, Wüest A (2021) Persistence of bioconvection-induced mixed layers in a stratified lake. Limnol Oceanogr 9999:1–17. https://doi.org/10.1002/lno.11702

    Article  Google Scholar 

  39. Moore DR, Weiss NO (1973) Nonlinear penetrative convection. J Fluid Mech 61(3):553–581. https://doi.org/10.1017/S0022112073000868

    Article  Google Scholar 

  40. Kell George S (1975) Density, thermal expansivity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J Chem Eng Data 20(1):97–105. https://doi.org/10.1021/je60064a005

    Article  Google Scholar 

  41. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209. https://doi.org/10.1080/10408410701451948

    Article  CAS  Google Scholar 

  42. Cheregi O, Ekendahl S, Engelbrektsson J, Strömberg N, Godhe A, Spetea C (2019) Microalgae biotechnology in Nordic countries - the potential of local strains. Physiol Plant 166:438–450. https://doi.org/10.1111/ppl.12951

    Article  CAS  Google Scholar 

  43. Schulze PSC, Hulatt CJ, Morales-Sánchez D, Wijffels RH, Kiron V (2019) Fatty acids and proteins from marine cold adapted microalgae for biotechnology. Algal Res 42:101604. https://doi.org/10.1016/j.algal.2019.101604

    Article  Google Scholar 

  44. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408. https://doi.org/10.3389/fmicb.2016.01408

    Article  Google Scholar 

  45. Bees MA, Croze OA (2014) Mathematics for streamlined biofuel production from unicellular algae. Biofuels 5:53–65. https://doi.org/10.4155/bfs.13.66

    Article  CAS  Google Scholar 

  46. Kessler JO (1986) Individual and collective fluid-dynamics of swimming cells. J Fluid Mech 173:191–205. https://doi.org/10.1017/S0022112086001131

    Article  Google Scholar 

  47. Moore DR, Weiss NO (1973) Nonlinear penetrative convection. J Fluid Mech 61:553–581. https://doi.org/10.1017/S0022112073000868

    Article  Google Scholar 

  48. Antar BN (1987) Penetrative double-diffusive convection. Phys Fluids 30:322–330. https://doi.org/10.1063/1.866381

    Article  Google Scholar 

  49. Large E, Andereck CD (2014) Penetrative Rayleigh-Bénard convection in water near its maximum density point. Phys Fluids 26:094101. https://doi.org/10.1063/1.4895063

    Article  CAS  Google Scholar 

  50. Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw Hill, New York

    Google Scholar 

  51. Mamou M, Vasseur P, Hasnaoui M (2001) On numerical stability analysis of double-diffusive convection in confined enclosures. J Fluid Mech 433:209–250. https://doi.org/10.1017/S0022112000003451

    Article  CAS  Google Scholar 

  52. Bearon RN, Grünbaum D (2006) Bioconvection in a stratified environment: experiments and theory. Phys Fluids 18:127102. https://doi.org/10.1063/1.2402490

    Article  CAS  Google Scholar 

  53. Hill NA, Pedley TJ, Kessler JO (1989) Growth of bioconvection patterns in a suspension of gyrotactic micro-organisms in a layer of finite depth. J Fluid Mech 208:509–543. https://doi.org/10.1017/S0022112089002922

    Article  Google Scholar 

  54. Pérez-Reyes I, Dávalos-Orozco LA (2019) Bioconvective linear stability of gravitactic microorganisms. Heat Mass Transf Adv Sci Technol Appl Alfredo Iranzo IntechOpen. https://doi.org/10.5772/intechopen.83724

    Article  Google Scholar 

  55. Sato N, Sato K, Toyoshima M (2018) Analysis and modeling of the inverted bioconvection in Chlamydomonas reinhardtii: emergence of plumes from the layer of accumulated cells. Heliyon 4:e00586. https://doi.org/10.1016/j.heliyon.2018.e00586

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: I.A. and R.O. Stability analysis and numerical simulations: I.A., R.O. and Z.A. Analysis and interpretation of results: I.A., R.O.,T.N.G. and Z.A. Revision of the manuscript: I.A., R.O.,T.N.G. and Z.A.

Corresponding author

Correspondence to Zineddine Alloui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alloui, I., Ouzani, R., Nguyen-Quang, T. et al. Effect of density maximum of water on the stability of gravitactic convective motions in biothermal convection. Environ Fluid Mech (2024). https://doi.org/10.1007/s10652-024-09981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10652-024-09981-1

Keywords

Navigation