Skip to main content
Log in

Nonlinear transient transfinite element thermal analysis of thick-walled FGM cylinders with temperature-dependent material properties

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

An algorithm for investigation of nonlinear systems by the transfinite element method is presented. Basically, the transformation techniques have been developed for linear systems. Nonlinear transient heat transfer of a thick FGM cylinder with temperature-dependent material properties is investigated in the present paper to clarify the proposed algorithm. Two main novelties of the present research are: (1) incorporating the temperature-dependency of the material properties in the thermal analysis which lead to highly non-linear governing equations and (2) proposing an updating numerical transfinite element procedure to solve the resulted highly nonlinear governing equations. To reduce the effect of the artificial local heat source generation at the mutual boundaries of the elements, second order elements are used. Influences of various boundary conditions, geometric parameters, and volume fraction indices on the temperature distribution are investigated. Results of the proposed transfinite element technique show a good agreement with those obtained using the iterative time integration or analytical method. Furthermore, results reveal the significant effect of the temperature-dependency of the material properties. The present solution algorithm prevents numerical oscillations and damping, and accumulated time integration errors. The present technique may be used to obtain relatively accurate and stable results in a less computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noda N (1991) Thermal stresses in materials with temperature-dependent properties. Appl Mech Rev 44:83–97

    Article  Google Scholar 

  2. Tanigawa Y (1995) Some basic thermoelastic problems for non-homogeneous structural materials. Appl Mech Rev 48:287–300

    Article  Google Scholar 

  3. Zimmerman RW, Lutz MP (1999) Thermal stress and thermal expansion in a uniformly heated functionally graded cylinder. J Therm Stress 22:88–177

    Google Scholar 

  4. Obata Y, Noda N (1994) Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material. J Therm Stress 17:471–487

    Article  Google Scholar 

  5. El-abbasi N, Meguid SA (2000) Finite element modeling of the thermoelastic behavior of functionally graded plates and shells. Int J Comput Eng Sci 1:51–165

    Article  Google Scholar 

  6. Jabbari M, Sohrabpour S, Eslami MR (2002) Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessels Piping 79:493–497

    Article  Google Scholar 

  7. Liew KM, Kitipornchai S, Zhang XZ, Lim CW (2003) Analysis of the thermal stress behavior of functionally graded hollow circular cylinders. Int J Solids Struct 40:2355–2380

    Article  MATH  Google Scholar 

  8. Jabbari M, Sohrabpour S, Eslami MR (2003) General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. ASME J Appl Mech 70:111–118

    Article  MATH  Google Scholar 

  9. Shen HS (2004) Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. Int J Solids Struct 41:1961–1974

    Article  MATH  Google Scholar 

  10. Wang X (1995) Thermal shock in a hollow cylinder caused by rapid arbitrary heating. Int J Sound Vib 183(5):899–906

    Article  MATH  ADS  Google Scholar 

  11. Kandil A, EL-Kady AA, EL-Kafrawy A (1995) Transient thermal stress analysis of thick-walled cylinders. Int J Mech Sci 37:721–732

    Article  MATH  Google Scholar 

  12. Segall AE (2003) Transient analysis of thick-walled piping under polynomial thermal loading. Nucl Eng Des 226:183–191

    Article  ADS  Google Scholar 

  13. Segall AE (2004) Thermoelastic stresses in an axisymmetric thick-walled tube under an arbitrary internal transient. J Press Vessel Technol 126:327–332

    Article  Google Scholar 

  14. Lee ZY (2005) Hybrid numerical method applied to 3-D multilayered hollow cylinder with periodic loading conditions. Appl Math Comput 166:95–117

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Shahani AR, Nabavi SM (2007) Analytical solution of the quasi-static thermoelasticity problem in a pressurized thick-walled cylinder subjected to transient thermal loading. Appl Math Model 31:1807–1818

    Article  MATH  Google Scholar 

  16. Reddy JN, Chin CD (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress 21:593–626

    Article  Google Scholar 

  17. Praveen GN, Chin CD, Reddy JN (1999) Thermoelastic analysis of a functionally graded ceramic-metal cylinder. J Eng Mech 125(11):1259–1267

    Article  Google Scholar 

  18. Obata Y, Kanayama K, Ohji T, Noda N (1999) Two-dimensional unsteady thermal stresses in a partially heated circular cylinder made of functionally gradient materials. In: 3rd int congress on thermal stresses, pp 595–598

  19. Awaji H, Sivakumar R (2001) Temperature and stress distribution in a hollow cylinder of functionally graded material: the case of temperature-independent material properties. J Am Ceram Soc 84:1059–1065

    Article  Google Scholar 

  20. Kim KS, Noda N (2002) Green’s function approach to unsteady thermal stresses in an infinite hollow cylinder of functionally graded material. Acta Mech 156:145–61

    Article  MATH  Google Scholar 

  21. Sladek J, Sladek V, Zhang C (2003) Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method. Comput Mater Sci 28:494–504

    Article  Google Scholar 

  22. Wang BL, Mai YW, Zhang XH (2004) Thermal shock resistance of functionally graded materials. Acta Mater 52:4961–4972

    Article  ADS  Google Scholar 

  23. Wang BL, Mai YW (2005) Transient one-dimensional heat conduction problems solved by finite element. Int J Mech Sci 47:303–317

    Article  MATH  Google Scholar 

  24. Hosseini SM, Akhlaghi M, Shakeri M (2007) Transient heat conduction in functionally graded thick hollow cylinders by analytical method. Heat Mass Transf 43:669–675

    Article  ADS  Google Scholar 

  25. Shao ZS, Wang TJ, Ang KK (2007) Transient thermo-mechanical analysis of functionally graded hollow circular cylinders. J Therm Stres 30(1):81–104

    Article  Google Scholar 

  26. Shao ZS, Ma GW (2007) Thermo-mechanical stresses in functionally graded circular hollow cylinder with linearly increasing boundary temperature. Compos. Struct. doi:10.1016/j.compstruct.2007.04.011

    Google Scholar 

  27. Shao ZS, Ma GW (2008) Thermo-mechanical stresses in functionally graded circular hollow cylinder with linearly increasing boundary temperature. Compos Struct 83:259–265

    Article  Google Scholar 

  28. Shariyat M (2008) Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. Int J Solids Struct 45:2598–2612

    Article  MATH  Google Scholar 

  29. He T, Tian X, Shen Y (2002) Two-dimensional generalized thermal shock problem of a thick piezoelectric plate of infinite extent. Int J Eng Sci 40:2249–2264

    Article  Google Scholar 

  30. Tian X, Shen Y, Chen C, He T (2006) A direct finite element method study of generalized thermoelastic problems. Int J Solids Struct 43:2050–2063

    Article  MATH  Google Scholar 

  31. Bagri A, Eslami MR (2007) Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord-Shulman theory. Compos Struct. doi:10.1016/j.compstruct.2007.04.024

    Google Scholar 

  32. Shakeri M, Akhlaghi M, Hoseini SM (2006) Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder. Compos Struct 76:174–181

    Article  Google Scholar 

  33. Shariyat M, Eslami MR (1996) Isoparametric finite-element thermoelasto-plastic creep analysis of shells of revolution. Int J Press Vessels Piping 68(3):249–259

    Article  Google Scholar 

  34. Zienkiewicz OC, Taylor RL (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, Stoneham

    MATH  Google Scholar 

  35. Reddy JN (2005) An introduction to the finite element method, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  36. Heinrich JC, Pepper DW (2005) The finite element method: basic concepts and applications, 2nd edn. Taylor & Francis, London

    Google Scholar 

  37. Touloukian YS (1976) Thermophysical properties of high temperature solid materials. McMillan, New York

    Google Scholar 

  38. Honig G, Hirdes U (1984) A method for the numerical inversion of Laplace transforms. J Comput Appl Math 10:113–132

    Article  MATH  MathSciNet  Google Scholar 

  39. Carslaw HS, Jaeger JC (1986) Conduction of heat in solids. Clarendon, Oxford

    MATH  Google Scholar 

  40. Qing G, Xu J, Li P, Qiu J (2007) A new efficient numerical method and the dynamic analysis of composite laminates with piezoelectric layers. Compos Struct 78:457–467

    Article  Google Scholar 

  41. Bathe KJ (2007) Finite element procedures. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azadi, M., Shariyat, M. Nonlinear transient transfinite element thermal analysis of thick-walled FGM cylinders with temperature-dependent material properties. Meccanica 45, 305–318 (2010). https://doi.org/10.1007/s11012-009-9249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-009-9249-4

Keywords

Navigation