Skip to main content
Log in

Generalized Heat Equation with the Caputo–Fabrizio Fractional Derivative for a Nonsimple Thermoelastic Cylinder with Temperature-Dependent Properties

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In the current paper, a generalized thermoelastic model with two-temperature characteristics, including a heat transfer equation with fractional derivatives and phase lags, is proposed. The Caputo–Fabrizio fractional differential operator is used to derive a new model and to solve the singular kernel problem of conventional fractional models. The suggested model is then exploited to investigate responses of an isotropic cylinder with variable properties and boundaries constantly exposed to thermal or mechanical loads. The elastic cylinder is also assumed to be permeated with a constant magnetic field and a continuous heat source. The governing partial differential equations are formulated in dimensionless forms and then solved by the Laplace transform technique together with its numerical inversions. The effects of the heat source intensity and fractional order parameter on the thermal and mechanical responses are addressed in detail. To verify the integrity of the obtained results, some comparative studies are conducted by considering different thermoelastic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. Hilfer, R., Applications of Fractional Calculus in Physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779

  2. Magin, R.L., Fractional Calculus Models of Complex Dynamics in Biological Tissues, Comput. Math. Appl., 2010, vol. 59, pp. 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039

    Article  MathSciNet  Google Scholar 

  3. Oldham, K.B., Fractional Differential Equations in Electrochemistry, Adv. Eng. Softw., 2010, vol. 41, pp. 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012

    Article  Google Scholar 

  4. Povstenko, Y., Fractional Nonlocal Elasticity and Solutions for Straight Screw and Edge Dislocations, Phys. Mesomech ., 2020, vol. 23, no. 6, pp. 547–555. https://doi.org/10.1134/S1029959920060107

    Article  Google Scholar 

  5. Moshtaghi, N. and Saadatmandi, A., Numerical Solution of Time Fractional Cable Equation via the Sinc-Bernoulli Collocation Method, J. Appl. Comput. Mech ., 2021, vol. 7(4), pp. 1916–1924. https://doi.org/10.22055/JACM.2020.31923.1940

    Article  Google Scholar 

  6. Attia, N., Seba, D., Akgül, A., and Nour, A., Solving Duffing–Van der Pol Oscillator Equations of Fractional ‎Order by an Accurate Technique, J. Appl. Comput. Mech ., 2021, vol. 7(3), pp. 1480–1487. https://doi.org/10.22055/jacm.2021.35369.2642

    Article  Google Scholar 

  7. Atangana, A. and Gómez-Aguilar, J.F., Numerical Approximation of Riemann–Liouville Definition of Fractional Derivative: From Riemann–Liouville to Atangana–Baleanu, Numer. Methods Partial Differ. Equ., 2018, vol. 34, pp. 1502–1523. https://doi.org/10.1002/num.22195

    Article  Google Scholar 

  8. Veeresha, P., Prakasha, D.G., and Baskonus, H.M., New Numerical Surfaces to the Mathematical Model of Cancer Chemotherapy Effect in Caputo Fractional Derivatives, Chaos, 2019, vol. 29, p. 013119. https://doi.org/10.1063/1.5074099

    Article  ADS  MathSciNet  Google Scholar 

  9. Caputo, M. and Fabrizio, M., A New Definition of Fractional Derivative without Singular Kernel, Prog. Fract. Differ. Appl., 2015, vol. 1, pp. 73–85. http://dx.doi.org/10.12785/pfda/010201

    Google Scholar 

  10. Dokuyucu, M.A., A Fractional Order Alcoholism Model Via Caputo–Fabrizio Derivative, AIMS Math., 2020, vol. 5, pp. 781–797. https://doi.org/10.3934/math.2020053

    Article  MathSciNet  Google Scholar 

  11. Yépez-Martínez, H. and Gómez-Aguilar, J.F., A New Modified Definition of Caputo–Fabrizio Fractional-Order Derivative and Their Applications to the Multi Step Homotopy Analysis Method (MHAM), J. Comput. Appl. Math ., 2019, vol. 346, pp. 247–260. https://doi.org/10.1016/j.cam.2018.07.023

    Article  Google Scholar 

  12. Vivas-Cruz, L.X., González-Calderón, A., Taneco-Hernández, M.A., and Luis, D.P., Theoretical Analysis of a Model of Fluid Flow in a Reservoir with the Caputo–Fabrizio Operator, Commun. Nonlinear Sci. Numer. Simul., 2020, vol. 84, p. 105186. https://doi.org/10.1016/j.cnsns.2020.105186

  13. Goufo, E.F. and Nieto, J.J., Attractors for Fractional Differential Problems of Transition to Turbulent Flows, J. Comput. Appl. Math ., 2018, vol. 339, pp. 329–342. https://doi.org/10.1016/j.cam.2017.08.026

    Article  Google Scholar 

  14. Ghanbari, B., Kumar, S., and Kumar, R., A Study of Behaviour for Immune and Tumor Cells in Immunogenetic Tumour Model with Non-Singular Fractional Derivative, Chaos Solitons Fractals , 2020, vol. 133, p. 109619. https://doi.org/10.1016/j.chaos.2020.109619

    Article  MathSciNet  Google Scholar 

  15. Biot, M., Thermoelastic and Irreversible Thermodynamics, J. Appl. Phys ., 1956, vol. 27, pp. 240–253. https://doi.org/10.1063/1.1722351

    Article  ADS  Google Scholar 

  16. Lord, H.W. and Shulman, Y., A Generalized Dynamical Theory of Thermoelasticity, J. Mech. Phys. Solids, 1967, vol. 15, pp. 299–309. https://doi.org/10.1016/0022-5096(67)90024-5

    Article  ADS  Google Scholar 

  17. Green, A.E. and Lindsay, K.A., Thermoelasticity, J. Elasticity , 1971, vol. 2, pp. 1–7. https://doi.org/10.1007/BF00045689

    Article  Google Scholar 

  18. Green, A.E. and Naghdi, P.M., On Undamped Heat Waves in an Elastic Solid, J. Therm. Stresses, 1992, vol. 15, pp. 253–264. https://doi.org/10.1080/01495739208946136‎

    Article  ADS  Google Scholar 

  19. Green, A.E. and Naghdi, P.M., Thermoelasticity without Energy Dissipation, J. Elasticity , 1993, vol. 31, pp. 189–208. https://doi.org/10.1007/BF00044969

    Article  MathSciNet  Google Scholar 

  20. Hobiny, A.D. and Abbas, I.A., A Dual-Phase-Lag Model of Photothermoelastic Waves in a Two-Dimensional Semiconducting Medium, Phys. Mesomech ., 2020, vol. 23, no. 2, pp. 167–175. https://doi.org/10.1134/S1029959920020083

    Article  Google Scholar 

  21. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., and Shirazi, A.H., Temperature-Dependent Physical Characteristics of the Rotating Nonlocal Nanobeams Subject to a Varying Heat Source and a Dynamic Load, Facta Univ. Ser. Mech. Eng., 2021, vol. 19(4), pp. 633–656. https://doi.org/10.22190/FUME201222024A

    Article  Google Scholar 

  22. Awwad, E., Abouelregal, A., and Hassan, A., Thermoelastic Memory-Dependent Responses to an Infinite Medium ‎with a Cylindrical Hole and Temperature-Dependent Properties, J. Appl. Comput. Mech ., 2021, vol. 7(2), pp. 870–882. https://doi.org/10.22055/JACM.2021.36048.2784

    Article  Google Scholar 

  23. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., Malikan, M., and Eremeev, V.A., Computational Analysis of an Infinite Magneto-Thermoelastic Solid Periodically Dispersed with Varying Heat Flow Based on Non-Local Moore–Gibson–Thompson Approach, Continuum Mech. Thermodyn., 2022, vol. 34, pp. 1067–1085. https://doi.org/10.1007/s00161-021-00998-1

    Article  ADS  MathSciNet  Google Scholar 

  24. Chen, P.J. and Gurtin, M.E., On a Theory of Heat Conduction Involving Two Temperatures, Z. Angew. Math. Phys ., 1968, vol. 19, pp. 614–627. https://doi.org/10.1007/BF01594969

    Article  Google Scholar 

  25. Chen, P.J., Gurtin, M.E., and Willams, W.O., On the Thermodynamics of Non-Simple Elastic Materials with Two Temperature, Z. Angew. Math. Phys ., 1969, vol. 20, pp. 107–112. https://doi.org/10.1007/BF01591120

    Article  Google Scholar 

  26. Warren, W.E. and Chen, P.J., Wave Propagation in the Two Temperature Theory of Thermoelasticity, Acta Mech ., 1973, vol. 16, pp. 21–23. https://doi.org/10.1007/s10659-020-09770-z

    Article  Google Scholar 

  27. Quintanilla, R., On Existence, Structural Stability, Convergence and Spatial Behaviour in Thermoelastic with Two Temperature, Acta Mech ., 2004, vol. 168, pp. 161–173. https://doi.org/10.1007/s00707-004-0073-6

    Article  Google Scholar 

  28. Quintanilla, R., Exponential Stability and Uniqueness in Thermoelasticity with Two Temperature, Dyn. Contin. Discret. Impuls. Systems. Ser. A Math. Anal., 2004, vol. 11, pp. 57–68.

    Google Scholar 

  29. Sofiyev, A.H., Thermoelastic Stability of Functionally Graded Truncated Conical Shells, Comp. Struct., 2007, vol. 77, pp. 56–65. https://doi.org/10.1016/j.compstruct.2005.06.004

    Article  Google Scholar 

  30. Sofiyev, A.H., Zerin, Z., and Kuruoglu, N., Thermoelastic Buckling of FGM Conical Shells under Non-Linear Temperature Rise in the Framework of the Shear Deformation Theory, Composites. B. Eng., 2017, vol. 108, pp. 279–290. https://doi.org/10.1016/j.compositesb.2016.09.102

    Article  Google Scholar 

  31. Abouelregal, A.E., Saidi, A., Sedighi, H.M., Shirazi, A.H., and Sofiyev, A.H., Thermoelastic Behavior of an Isotropic Solid Sphere under a Non-Uniform Heat Flow According to the MGT Thermoelastic Model, J. Therm. Stress., 2022, vol. 45, no. 1, pp. 12–29. https://doi.org/10.1080/01495739.2021.2005497

    Article  Google Scholar 

  32. Berman, R., The Thermal Conductivity of Dielectric Solids at Low Temperatures, Advanc. Phys., 1953, vol. 2, pp. 103–140. https://doi.org/10.1080/00018735300101192

    Article  ADS  Google Scholar 

  33. Abouelregal, A.E., Khalil, K.M., Mohammed, F.A., Nasr, M.E., Zakaria, A., and Ahmed, I.E., A Generalized Heat Conduction Model of Higher-Order Time Derivatives and Three-Phase-Lags for Non-Simple Thermoelastic Materials, Sci. Rep., 2020, vol. 10, p. 3625. https://doi.org/10.1038/s41598-020-70388-1

    Article  Google Scholar 

  34. Abouelregal, A.E., Two-Temperature Thermoelastic Model without Energy Dissipation Including Higher Order Time-Derivatives and Two Phase-Lags, Mater. Res. Express, 2020, vol. 6. https://doi.org/10.1088/2053-1591/ab447f

  35. Balokhonov, R., Romanova, V., Schwab, E., Zemlianov, A., and Evtushenko, E., Computational Microstructure-Based Analysis of Residual Stress Evolution in Metal-Matrix Composite Materials during Thermomechanical Loading, Facta Univ. Ser. Mech. Eng., 2021, vol. 19(2), pp. 241–252. https://doi.org/10.22190/FUME201228011B

    Article  Google Scholar 

  36. Sharma, D., Kaur, R., Sharma, H., Investigation of Thermo-Elastic Characteristics in Functionally Graded Rotating Disk Using Finite Element Method, Nonlin. Eng., 2021, vol. 10(1), pp. 312–322. https://doi.org/10.1515/nleng-2021-0025‎

    Article  Google Scholar 

  37. Honig, G. and Hirdes, U., A Method for the Numerical Inversion of Laplace Transform, J. Comp. Appl. Math., 1984, vol. 10, pp. 113–132. https://doi.org/10.1016/0377-0427(84)90075-X

    Article  Google Scholar 

  38. Xiong, Q.L. and Tian, X.G., Transient Magneto-Thermoelastic Response for a Semi-Infinite Body with Voids and Variable Material Properties during Thermal Shock, Int. J. Appl. Mech., 2011, vol. 3, pp. 161–185. https://doi.org/10.1142/S1758825111001287

    Article  Google Scholar 

  39. Xiong, C. and Guo, Y., Effect of Variable Properties and Moving Heat Source on Magnetothermoelastic Problem under Fractional Order Thermoelasticity, Adv. Mater. Sci. Eng., 2016, vol. 2016, p. 5341569. https://doi.org/10.1155/2016/5341569‎

    Article  Google Scholar 

  40. Patel, J. and Deheri, G.M., Influence of Viscosity Variation on Ferrofluid Based Long Bearing, Rep. Mech. Eng., 2021, vol. 3(1), pp. 37–45.

    Article  Google Scholar 

  41. Nowinski, J.L., Theory of Thermoelasticity with Applications, Netherlands: Springer, 1978.

  42. Temme, N.M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics, New York: John Wiley and Sons, Inc., 1996.

  43. Sherief, H. and Abd El-Latief, A.M., Effect of Variable Thermal Conductivity on a Half-Space under the Fractional Order Theory of Thermoelasticity, Int. J. Mech. Sci., 2013, vol. 74, pp. 185–189. https://doi.org/10.1016/j.ijmecsci.2013.05.016

    Article  Google Scholar 

  44. Aboueregal, A.E. and Sedighi, H.M., The Effect of Variable Properties and Rotation in a Visco-Thermoelastic Orthotropic Annular Cylinder under the Moore–Gibson–Thompson Heat Conduction Model, Proc. Inst. Mech. Eng. L. J. Mater. Design Applic., 2021, vol. 235, pp. 1004–1020. https://doi.org/10.1177/1464420720985899

    Article  Google Scholar 

  45. Hendy, M.H., El-Attar, S.I., and Ezzat, M.A., Two-Temperature Fractional Green–Naghdi of Type III in Magneto-Thermo-Viscoelasticity Theory Subjected to a Moving Heat Source, Indian J. Phys., 2021, vol. 95, pp. 657–671. https://doi.org/10.1007/s12648-020-01719-1

    Article  ADS  Google Scholar 

  46. Yadav, R., Kalkal, K.K., and Deswal, S., Two-Temperature Generalized Thermoviscoelasticity with Fractional Order Strain Subjected to Moving Heat Source: State Space Approach, J. Math., 2015, vol. 2015, p. 487513. https://doi.org/10.1155/2015/487513

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and publication of this paper.‎

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Sedighi.

Ethics declarations

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this ‎paper.‎

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 6, pp. 135–151.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelregal, A.E., Sofiyev, A.H., Sedighi, H.M. et al. Generalized Heat Equation with the Caputo–Fabrizio Fractional Derivative for a Nonsimple Thermoelastic Cylinder with Temperature-Dependent Properties. Phys Mesomech 26, 224–240 (2023). https://doi.org/10.1134/S1029959923020108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923020108

Keywords:

Navigation