Skip to main content

Advertisement

Log in

Elevated plasma homocysteine levels are associated with disability progression in patients with multiple sclerosis

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The aims of this study were to verify whether hyperhomocysteinemia is associated with disability progression in Multiple Sclerosis (MS) patients and whether TNF pathways and cellular adhesion molecules (CAM) are involved in this process. This study included 180 MS patients, who were divided according to their levels of homocysteine (Hyperhomocysteinemia ≥11.35 μmol/L) and 204 healthy individuals (control group). MS patients showed higher levels of homocysteine (p < 0.001), tumor necrosis factor alpha (TNF-α, p < 0.001), TNF receptor 1 (TNFR1, p = 0.038), TNF receptor 2 (TNFR2, p < 0.001), and lower levels of PECAM (p = 0.001), ICAM (p < 0.001) and VCAM (p = 0.005) than controls. The multivariate binary logistic regression analysis showed that plasma levels of homocysteine, TNFR1, TNFR2 and PECAM were associated with the presence of disease. MS patients with hyperhomocysteinemia showed higher disease progression evaluated by the Multiple Sclerosis Severity Score (MSSS, p < 0.001), disability evaluated by Expanded Disability Status Score EDSS (p < 0.001), TNFR1 (p = 0.039) and ICAM (p = 0.034) than MS patients with lower levels of homocysteine. Hyperhomocysteinemia was independently associated with MSSS in MS patients, but were not associated with TNF-α, TNFR, and CAM. Homocysteine levels was higher in progressive forms than relapsing-remitting MS (p < 0.001), independently of sex and age. In conclusion, this is the first study in which homocysteinemia was associated with progression of the disease (MSSS), although this finding was not directly related to TNF-α and TNFR pathways or to CAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ansari R, Mahta A, Mallack E et al (2014) Hyperhomocysteinemia and neurological disorders: a review. J Clin Neurol 10:281–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Besler HT, Comoglu S (2003) Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine level in patients with multiple sclerosis. Nutr Neurosci 6:189–196

    Article  CAS  PubMed  Google Scholar 

  • Dardiotis E, Arseniou S, Sokratous M et al (2017) Vitamin B12, folate and homocysteine levels and multiple sclerosis: a meta-analysis. Mult Scler Relat Disord 17:190–197

    Article  PubMed  Google Scholar 

  • Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 113:477–485

    Article  CAS  PubMed  Google Scholar 

  • Fahmy EM, Elfayoumy NM, Abdelalim AM et al (2018) Relation of serum levels of homocysteine, vitamin B12 and folate to cognitive functions in multiple sclerosis patients. Int J Neurosci 21:1–7

    Google Scholar 

  • Faraci FM, Lentz SR (2004) Hiperhomocysteinemia, oxidative stress and cerebral vascular dysfunction. Stroke 35:345–347

    Article  PubMed  Google Scholar 

  • Greenwood J, Heasman SJ, Alvarez JI (2011) Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39

    Article  CAS  PubMed  Google Scholar 

  • Guzel I, Mungan S, Oztekin ZN et al (2016) Is there an association between the expanded disability status scale and inflammatory markers in multiple sclerosis? J Chin Med Assoc 79:54–57

    Article  PubMed  Google Scholar 

  • Hartung HP, Reiners K, Archelos JJ et al (1995) Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging. Ann Neurol 38:186–193

    Article  CAS  PubMed  Google Scholar 

  • Ho PI, Ortiz D, Rogers E et al (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70:694–702

    Article  CAS  PubMed  Google Scholar 

  • Kalinowska-Lyszczars A, Michalak S, Pawlak MA et al (2016) Serum sPECAM-1 and Svcam-1 levels are associated with conversion to multiple sclerosis in patients with optic neuritis. J Neuroimmunol 300:11–14

    Article  CAS  Google Scholar 

  • Kamath AF, Chauhan AK, Kisucka J et al (2006) Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 107:591–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocer B, Engur S, Ak F et al (2009) Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis. J Clin Neurosci 16:399–403

    Article  CAS  PubMed  Google Scholar 

  • Koch MW, George S, Wall W et al (2015) Serum NSE level and disability progression in multiple sclerosis. J Neurol Sci 350:46–50

    Article  CAS  PubMed  Google Scholar 

  • Kuenz B, Lutterotti A, Khalil M et al (2005) Plasma levels of soluble adhesion molecules S-pecam, SP-selectin and E-selectin are associated with relapsing-remmiting disease course of multiple sclerosis. J Neuroimmunol 167:143–149

    Article  CAS  PubMed  Google Scholar 

  • Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Moghaddasi M, Mamarabadi M, Mohebi N et al (2013) Homocysteine, vitamin B12 and folate levels in Iranian patients with multiple sclerosis: a case control study. Clin Neurol Neurosur 115:1802–1805

    Article  Google Scholar 

  • Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  CAS  PubMed  Google Scholar 

  • Panunzio MF, Pisano A, Antoniciello A et al (2003) Supplementation with fruit and vegetable concentrate decreases plasma homocysteine levels in a dietary controlled trial. Nutr Res 23:1221–1228

    Article  CAS  Google Scholar 

  • Polman CH, Reingold SC, Banwell B (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the “McDonald criteria”. Ann Neurol 69:293–302

    Article  Google Scholar 

  • Probert L (2015) TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects. Neuroscience 302:2–22

    Article  CAS  PubMed  Google Scholar 

  • Ramsaransing GSM, Fokkema MR, Teelken A et al (2006) Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry 77:189–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renoux C (2011) Natural history of multiple sclerosis: long-term prognostic factors. Neurol Clin 29:293–308

    Article  PubMed  Google Scholar 

  • Rieckmann P, Altenhofen B, Riegel A et al (1998) Correlation of soluble adhesion molecules in blood and cerebrospinal fluid with magnetic resonance imaging activity in patients with multiple sclerosis. Mult Scler 4:178–182

    Article  CAS  PubMed  Google Scholar 

  • Roxburgh RHSR, Seaman SR, Masterman T et al (2005) Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology 64:1144–1154

    Article  CAS  PubMed  Google Scholar 

  • Russo C, Morabito F, Luise F et al (2008) Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. J Neurol 255:64–69

    Article  CAS  PubMed  Google Scholar 

  • Salemi G, Gueli MC, Vitale F et al (2010) Blood lipids, homocysteine, stress factors and vitamins in clinically stable multiple sclerosis patients. Lipids Health Dis 9:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshadri S (2006) Elevated plasma homocysteine levels: risk factors or risk marker for the development of dementia and Alzheimer ‘s disease? J Alzheimers Dis 9:393–398

    Article  CAS  PubMed  Google Scholar 

  • Sharief MK, Hentges R (1991) Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 325:467–472

    Article  CAS  PubMed  Google Scholar 

  • Skovierová H, Mahmood S, Blahovcová E et al (2015) Effect of homocysteine on survival of human glial cells. Physiol Res 64:747–754

    PubMed  Google Scholar 

  • Skovierová H, Vidomanová E, Mahmood S et al (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int Mol Sci 17:E1733

    Article  CAS  Google Scholar 

  • Teunissen CE, Kilestein J, Kragt JJ et al (2008) Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Wipfler P, Heikkinen A, Harrer A et al (2013) Circadian rhythmicity of inflammatory serum parameters: a neglected issue in the search of biomarkers in multiple sclerosis. J Neurol 260:221–227

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, He ZY, Liu HN (2011) Meta-analysis of the relationship between homocysteine, vitamin B12, folate and multiple sclerosis. J Clin Neurosci 18:933–938

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréa Name Colado Simão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, S.R., Flauzino, T., Sabino, B.S. et al. Elevated plasma homocysteine levels are associated with disability progression in patients with multiple sclerosis. Metab Brain Dis 33, 1393–1399 (2018). https://doi.org/10.1007/s11011-018-0224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0224-4

Keywords

Navigation