Skip to main content
Log in

Cordycepin confers neuroprotection in mice models of intracerebral hemorrhage via suppressing NLRP3 inflammasome activation

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Neuroinflammation has been recognized as a major contributor to brain injury caused by intracerebral hemorrhage (ICH). Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome acts as an important mediator of inflammatory response in various inflammation-related diseases including hemorrhagic insults. Cordycepin has recently been shown to possess anti-inflammatory effect; however, its role and the possible underlying mechanisms in ICH remain unclear. This study was designed to investigate the neuroprotective effect of cordycepin in mice models of ICH and to elucidate the underlying molecular mechanisms. ICH was induced in male ICR mice by injecting autologous blood infusion stereotactically. Cordycepin was then given intraperitoneally (i.p.) at 30 min after ICH induction. The results demonstrated that NLRP3 inflammasome was activated and exacerbated the inflammatory progression after ICH. Cordycepin treatment significantly alleviated neurological deficits, brain edema, and perihematomal tissue damage following ICH. These changes were accompanied by downregulated NLRP3 inflammasome components expression and a reduction of production and release of inflammasome substrates interleukin-1beta (IL-1β) and interleukin-18 (IL-18). Furthermore, cordycepin ameliorated neuronal death in the perihematomal regions, accompanied by a large reduction in the expression of high-mobility group protein B 1 (HMGB1) post-ICH. In conclusion, this study provides in vivo evidence that cordycepin confers neuroprotective effect in the models of ICH, possibly through the suppression of NLRP3 inflammasome activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744

    Article  CAS  PubMed  Google Scholar 

  • Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42:1781–1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauernfeind F, Ablasser A, Bartok E, Kim S, Schimid-Burgk J, Cavlar T, Hornung V (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci 68:765–783

    Article  CAS  PubMed  Google Scholar 

  • Cai ZL, Wang CY, Jiang ZL, Li HH, Liu WX, Gong LW, Xiao P, Li CH (2013) Effects of cordycepin on Y-maze learning task in mice. Eur J Pharmacol 714:249–253

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Jiang N, Hu Y, Wang R, Yin M, Ma X, Zhou K, Qi J, Yu B, Kou J (2016) Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci 17:e1418

    Article  PubMed  Google Scholar 

  • Cha JY, Ahn HY, Cho YS, Je JY (2013) Protective effect of cordycepin-enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats. Food Chem Toxicol 60:52–57

    Article  CAS  PubMed  Google Scholar 

  • Chang CF, Cho S, Wang J (2014) (−)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol 1:258–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W, Lim S, Song H, Song BW, Kim HJ, Cha MJ, Sung JM, Kim TW, Hwang KC (2008) Cordycepin inhibits vascular smooth muscle cell proliferation. Eur J Pharmacol 12:64–69

    Article  Google Scholar 

  • Chen LS, Stellrecht CM, Gandhi V (2008) RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells. Br J Haematol 140:682–691

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, He W, Zhou X, Lv Q, Xu X, Yang S, Zhao C, Guo L (2011) Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol 664:20–28

    Article  CAS  PubMed  Google Scholar 

  • Chiu GS, Chatterjee D, Darmody PT, Walsh JP, Meling DD, Johnson RW, Freund GG (2012) Hypoxia/reoxygenation impairs memory formation via adenosine-dependent activation of caspase-1. J Neurosci 32:13945–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YH, Kim GY, Lee HH (2014) Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des Devel Ther 8:1941–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding K, Wang H, Xu J, Li T, Zhang L, Ding Y, Zhu L, He J, Zhou M (2014) Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2-ARE signaling pathway as a potential mechanism. Free Radic Biol Med 73:1–11

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Wen Z, Shen H, Shen M, Chen G (2016) Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxidative Med Cell Longev 2016:1203285

    Article  Google Scholar 

  • Ellis A, Grace PM, Wieseler J, Favret J, Springer K, Skarda B, Ayala M, Hutchinson MR, Falci S, Rice KC, Maier SF, Watkins LR (2016) Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury. Brain Behav Immun 58:348–356

    Article  CAS  PubMed  Google Scholar 

  • Fanny DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12:941–966

    Article  Google Scholar 

  • Feng L, Chen Y, Ding R, Fu Z, Yang S, Deng X, Zeng J (2015) P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation 12:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Geldhoff M, Mook-Kanamori BB, Brouwer MC, Troost D, Leemans JC, Flavell RA, Van der Ende A, Van der Poll T, Van der Beek D (2013) Inflammasome activation mediates inflammation and outcome in humans and mice with pneumococcal meningitis. BMC Infect Dis 13:358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazer RI, Lott TJ, Peale AL (1978) Potentiation by 2′-deoxycoformycin of the inhibitory effect by 3′-deoxyadenosine (cordycepin) on nuclear RNA synthesis in L1210 cells in vitro. Cancer Res 38:2233–2238

    CAS  PubMed  Google Scholar 

  • Hwang IK, Lim SS, Yoo KY, Lee YS, Kim HG, Kang IJ, Kwon HJ, Park J, Choi SY, Won MH (2008) A phytochemically characterized extract of Cordyceps militaris and cordycepin protect hippocampal neurons from ischemic injury in gerbils. Planta Med 74:114–119

    Article  CAS  PubMed  Google Scholar 

  • Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    Article  CAS  PubMed  Google Scholar 

  • Krafft PR, McBride DW, Lekic T, Rolland WB, Mansell CE, Ma Q, Tang J, Zhang JH (2014) Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage. Behav Brain Res 264:151–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamkanfi M, Sarkar A, Vande Wall L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD, Dixit VM (2010) Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 185:4385–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A (2016) Poststroke inflammasome expression and regulation in the peri-infarct area by gonadal steroids after transient focal ischemia in the rat brain. Neuroendocrinology 103:460–475

    Article  CAS  PubMed  Google Scholar 

  • Lebeaupin C, Proics E, de Bieville CH, Rousseau D, Bonnafous S, Patouraux S, Adam G, Lavallard VJ, Rovere C, Le Thuc O, Saint-Paul MC, Anty R, Schneck AS, Iannelli A, Gugenheim J, Tran A, Gual P, Bailly-Maitre B (2015) ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 6:e1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Hou Y, Zhu M, Bao H, Nie J, Zhang GY, Shan L, Yao Y, Du K, Yang H, Li M, Zheng B, Xu X, Xiao C, Du J (2016) 3’-deoxyadenosine (cordycepin) produces a rapid and robust antidepressant effect via enhancing prefrontal AMPA receptor signaling pathway. Int J Neuropsychopharmacol 19:112

    Article  Google Scholar 

  • Li Y, Yang J, Chen MH, Wang Q, Qin MJ, Zhang T, Chen XQ, Liu BL, Wen XD (2015) Ilexgenin a inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner. Pharmacol Res 99:101–115

    Article  CAS  PubMed  Google Scholar 

  • Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, Zhou ML, Zhu L, Hang CH (2013) Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 38:2072–2083

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75:209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Zhang S, Du M (2015) Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nurt Res 35:431–439

    CAS  Google Scholar 

  • Meng XF, Tan L, Tan MS, Jiang T, Tan CC, Li MM, Wang HF, Yu JT (2014) Inhibition of the NLRP3 inflammasome provides neuroprotection in rats following amygdale kindling-induced status epilepticus. J Neuroinflammation 11:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Shinozuka K, Yoshikawa N (2015) Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. J Pharmacol Sci 127:53–56

    Article  CAS  PubMed  Google Scholar 

  • Nguemeni C, Gomez-Smith M, Jeffers MS, Schuch CP, Corbett D (2015) Time course of neuronal death following endothelin-1 induced focal ischemia in rats. J Neurosci Methods 242:72–76

    Article  CAS  PubMed  Google Scholar 

  • Olatunji OJ, Feng Y, Olatunji OO, Tang J, Ouyang Z, Su Z (2016) Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties. Biomed Pharmacother 81:7–14

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Singhrao SK (2016) Inflammasome involvement in Alzheimer's disease. J Alzheimers Dis 54:45–53

    Article  CAS  PubMed  Google Scholar 

  • Ribo M, Grotta JC (2006) Latest advances in intracerebral hemorrhage. Curr Neurol Neurosci Rep 6:17–22

    Article  PubMed  Google Scholar 

  • Rynkowski MA, Kim GH, Komotar RJ, Otten ML, Ducruet AF, Zacharia BE, Kellner CP, Hahn DK, Merkow MB, Garrett MC, Starke RM, Cho BM, Sosunov SA, Connolly ES (2008) A mouse model of intracerebral hemorrhage using autologous blood infusion. Nat Protoc 3:122–128

    Article  CAS  PubMed  Google Scholar 

  • Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  • Shao LW, Huang LH, Yan S, Jin JD, Ren SY (2016) Cordycepin induces apoptosis in human liver cancer HepG2 cells through extrinsic and intrinsic signaling pathways. Oncol Lett 12:995–1000

    PubMed  PubMed Central  Google Scholar 

  • Shigeura HT, Gordon CN (1965) The effects of 3′-deoxyadenosine on the synthesis of ribonucleic acid. J Biol Chem 240:806–810

    CAS  PubMed  Google Scholar 

  • Shin S, Moon S, Park Y, Kwon J, Lee S, Lee CK, Cho K, Ha NJ, Kim K (2009) Role of cordycepin and adenosine on the phenotypic switch of macrophages via induced anti-inflammatory cytokines. Immune Netw 9:255–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galan JE, Askenase PW, Flavell RA (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327

    Article  CAS  PubMed  Google Scholar 

  • Wali JA, Masters SL, Thomas HE (2013) Linking metabolic abnormalities to apoptotic pathways in Beta cells in type 2 diabetes. Cell 2:266–283

    Article  CAS  Google Scholar 

  • Wang J, Dore S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    Article  CAS  PubMed  Google Scholar 

  • Wang BJ, Won SJ, Yu ZR, Su CL (2005) Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem Toxicol 43:543–552

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Flavell RA, Eisenbarth SC (2010) The role of NOD-like receptors in shaping adaptive immunity. Curr Opin Immunol 22:34–40

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Maoqiang L, Fan L, Zhenyu B, Qifang H, Xuepeng W, Liulong Z (2016) Rutin attenuates neuroinflammation in spinal cord injury rats. J Surg Res 203:331–337

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Zhang QX, Leung PH (2007) Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine 14:43–49

    Article  PubMed  Google Scholar 

  • Xiao L, Ge Y, Sun L, Xu X, Xie P, Zhan M, Wang M, Dong Z, Li J, Duan S, Liu F, Xiao P (2012) Cordycepin inhibits albumin-induced epithelial-mesenchymal transition of renal tubular epithelial cells by reducing reactive oxygen species production. Free Radic Res 46:174–183

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li Y, He Y, Li T, Wang W, Zhang J, Wei J, Deng Y, Lin R (2015a) Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. Int Immunopharmacol 26:401–408

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhong L, Xian R, Yuan B (2015b) MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage. Mol Immunol 65:267–276

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Shen H, Lin L, Su T, Zhong S, Yang Z (2015) Recombinant adenovirus encoding NLRP3 RNAi attenuate inflammation and brain injury after intracerebral hemorrhage. J Neuroimmunol 287:71–75

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Wang A, He Y, Si Z, Xu S, Zhang S, Wang K, Wang D, Liu Y (2016) Cordycepin attenuates traumatic brain injury-induced impairments of blood-brain barrier integrity in rats. Brain Res Bull 127:171–176

    Article  CAS  PubMed  Google Scholar 

  • Yue K, Ye M, Zhou Z, Sun W, Lin X (2013) The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 65:474–493

    Article  CAS  PubMed  Google Scholar 

  • Zhang TZ, Yang SH, Juan D (2014) Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid Based Complement Alternat Med 2014:438506

    Google Scholar 

  • Zhao Y, Li Q, Zhao W, Li J, Sun Y, Liu K, Liu B, Zhang N (2015) Astragaloside IV and cycloastragenol are equally effective in inhibition of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in the endothelium. J Ethnopharmacol 169:210–218

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Wang B, Dai M, Sun Y, Sun Q, Yang G, Bian L (2013) Carvacrol alleviates cerebral edema by modulating AQP4 expression after intracerebral hemorrhage in mice. Neurosci Lett 555:24–29

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Lu M, Du RH, Qiao C, Jiang CY, Zhang KZ, Ding JH, Hu G (2016) MicroRNA-7 targets nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol Neurodegener 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xiong KL, Lin S, Zhong Q, Lu FL, Liang H, Li JC, Wang JZ, Yang QW (2010) Elevation of high-mobility group protein box-1 in serum correlates with severity of acute intracerebral hemorrhage. Mediat Inflamm 2010:142458

    Google Scholar 

  • Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K, Ericsson M, Lo EH, Whalen MJ (2012) Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke 43:524–531

    Article  PubMed  Google Scholar 

  • Zhu Z, Yan J, Geng C, Wang D, Li C, Feng S, Wang H (2016) A polymorphism within the 3'UTR of NLRP3 is associated with susceptibility for ischemic stroke in Chinese population. Cell Mol Neurobiol 36:981–988

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Fund (No.14ZR1426000; 16ZR14212000) from the Science and Technology Commission of Shanghai Municipality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cai, Zhebao Wu or Weiguo Zhao.

Ethics declarations

Disclosure

The authors declare no conflicts of interest.

Additional information

Yijun Cheng and Yongxu Wei contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Wei, Y., Yang, W. et al. Cordycepin confers neuroprotection in mice models of intracerebral hemorrhage via suppressing NLRP3 inflammasome activation. Metab Brain Dis 32, 1133–1145 (2017). https://doi.org/10.1007/s11011-017-0003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0003-7

Keywords

Navigation