Skip to main content
Log in

NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) can result in cognitive dysfunction, but its potential metabolic mechanisms remain unclear. In the present study, we analyzed the metabolite profiling in eight different brain regions of the normal rats and the streptozotocin (STZ)-induced diabetic rats accompanied by cognitive dysfunction using a 1H NMR-based metabolomic approach. A mixed linear model analysis was performed to assess the effects of DM, brain region and their interaction on metabolic changes. We found that different brain regions in rats displayed significant metabolic differences. In addition, the hippocampus was more susceptible to DM compared with other brain regions in rats. More interestingly, significant interaction effects of DM and brain region were observed on alanine, creatine/creatine-phosphate, lactate, succinate, aspartate, glutamate, glutamine, γ-aminobutyric acid, glycine, choline, N-acetylaspartate, myo-inositol and taurine. Based on metabolic pathway analysis, we speculate that cognitive dysfunction in the STZ-induced diabetic rats may be associated with brain region-specific metabolic alterations involving energy metabolism, neurotransmitters, membrane metabolism and osmoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ala:

alanine

Asp:

aspartate

Cho:

choline

Cre/PCre:

creatine/phosphocreatine

DM:

diabetes mellitus

GABA:

γ-Aminobutyric acid

Gln:

glutamine

Glu:

glutamate

Gly:

glycine

Lac:

lactate

Myo:

myo-inositol

NAA:

N-acetylaspartate

STZ:

streptozotocin

Suc:

succinate

T1DM:

type 1 diabetes mellitus

T2DM:

type 2 diabetes mellitus

Tau:

taurine

References

  • Bakker FC, Klijn CJ, Jennekens-Schinkel A, van der Tweel I, van der Grond J, van Huffelen AC, Tulleken CA, Kappelle LJ (2003) Cognitive impairment is related to cerebral lactate in patients with carotid artery occlusion and ipsilateral transient ischemic attacks. Stroke 34(6):1419–1424

    Article  CAS  PubMed  Google Scholar 

  • Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28(6):941–953

    Article  CAS  PubMed  Google Scholar 

  • Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  PubMed  Google Scholar 

  • Brands AMA, Biessels GJ, Haan EHFD, Kappelle LJ, Kessels RPC (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28(3):726–735

    Article  PubMed  Google Scholar 

  • Duarte JM, Lei H, Mlynárik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage 61(2):342–362

    Article  CAS  PubMed  Google Scholar 

  • Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 70:5.47.1–5.47.20. doi:10.1002/0471141755.ph0547s70

    Article  Google Scholar 

  • Gold SM, Dziobek I, Sweat V, Tirsi A, Rogers K, Bruehl H, Tsui W, Richardson S, Javier E, Convit A (2007) Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia 50(4):711–719

    Article  CAS  PubMed  Google Scholar 

  • Hellweg R, Nitsch R, Hock C, Jaksch M, Hoyer S (1992) Nerve growth factor and choline acetyltransferase activity levels in the rat brain following experimental impairment of cerebral glucose and energy metabolism. J Neurosci Res 31(3):479–486

    Article  CAS  PubMed  Google Scholar 

  • Huerta KC, Téllez GY, Salinas CAA, Díaz JMM (2013) Cognitive function in type 2 diabetes: a review. Salud Mental 36(2):149–157

    Article  Google Scholar 

  • Isaacks RE, Bender AS, Kim CY, Prieto NM, Norenberg MD (1994) Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res 19(3):331–338

    Article  CAS  PubMed  Google Scholar 

  • Ivanisevic J, Siuzdak G (2015) The role of metabolomics in brain metabolism research. J NeuroImmune Pharmacol 10(3):391–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanisevic J, Epstein AA, Kurczy ME, Benton PH, Uritboonthai W, Fox HS, Boska MD, Gendelman HE, Siuzdak G (2014) Brain region mapping using global metabolomics. Chem Biol 21(11):1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal A, Biessels GJ, Duis SEJ, Gispen WH (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43(4):500–506

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Feldman EL (2015) Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp Mol Med 47(3):e149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29(4):494–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalandea J, Halleyb H, Balayssaca S (2014) 1H NMR metabolomic signatures in five brain regions of the APPswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimers Dis 39(1):121–143

    Google Scholar 

  • Lei Y, Li D, Deng J, Shao WH, Fan SH, Wang X, Huang H, Chen SG, Zhang HZ, Zhang L, Zhang Y, Li WJ, Huang RZ, Liu X, Zhou CJ, Chen JJ, Xie P (2014) Metabolomic profiling of three brain regions from a postnatal infected Borna disease virus Hu-H1 rat model. Metabolomics 10(3):484–495

    Article  CAS  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226

    Article  CAS  PubMed  Google Scholar 

  • Liguori C, Stefani A, Sancesario G, Sancesario GM, Marciani MG, Pierantozzi M (2015) CSF lactate levels, τ proteins, cognitive decline: a dynamic relationship in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 86(6):655–659

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu H, Yang J, Liu X, Lu S, Wen T, Xie L, Wang G (2008) Increased amyloid beta-peptide (1-40) level in brain of streptozotocin-induced diabetic rats. Neuroscience 153(3):796–802

    Article  CAS  PubMed  Google Scholar 

  • Mcnay EC, Cotero VE (2010) Mini-review: impact of recurrent hypoglycemia on cognitive and brain function. Physiol Behav 100(3):234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel V, Yuan Z, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med 231(5):490–504

    CAS  Google Scholar 

  • Myhrer T (2003) Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Rev 41(2):268–287

    Article  CAS  PubMed  Google Scholar 

  • Nagayach A, Patro N, Patro I (2014) Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 29(3):747–761

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Su M, Lin J, Wang X, Qiu Y, Zhao A, Chen T, Jia W (2008) Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett 582(17):2627–2636

    Article  CAS  PubMed  Google Scholar 

  • OBrien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, Bowler JV, Ballard C, DeCarli C, Gorelick PB, Rockwood K, Burns A, Gauthier S, ST DK (2003) Vascular cognitive impairment. Lancet Neurol 2(2):89–98

  • Pasantes-Morales H, Schousboe A (1997) Role of taurine in osmoregulation in brain cells: mechanisms and functional implications. Amino Acids 12(3):281–292

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Pugliese M, Carrasco JL, Andrade C, Mas E, Mascort J, Mahy N (2005) Severe cognitive impairment correlates with higher cerebrospinal fluid levels of lactate and pyruvate in a canine model of senile dementia. Prog Neuro-Psychopharmacol Biol Psychiatry 29(4):603–610

    Article  CAS  Google Scholar 

  • Redish AD, Touretztky DS (1998) The role of the hippocampus in the Morris water maze. In Computational Neuroscience. Springer US, pp. 101–106

  • Sanders LM, Zeisel SH (2007) Choline: dietary requirements and role in brain development. Nutr Today 42(4):181–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68(9):1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Shingo AS, Kanabayashi T, Murase T, Kito S (2012) Cognitive decline in STZ-3 V rats is largely due to dysfunctional insulin signalling through the dentate gyrus. Behav Brain Res 229(2):378–383

    Article  CAS  PubMed  Google Scholar 

  • Sowers JR (2013) Diabetes mellitus and vascular disease. Hypertension 61(5):943–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Z, Shi A, Zhao J (2015) Epidemiological perspectives of diabetes. Cell Biochem Biophys 73(1):181–185

    Article  CAS  PubMed  Google Scholar 

  • van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada H, Okada Y, Uzuo H, Nakamura H (1998) The effects of glucose, mannose, fructose and lactate on the preservation of neural activity in the hippocampal slices from the Guinea pig. Brain Res 788(1):144–150

    Article  CAS  PubMed  Google Scholar 

  • Willette AA, Xu G, Johnson SC, Birdsill AC, Jonaitis EM, Sager MA, Hermann BP, La Rue A, Asthana S, Bendlin BB (2013) Insulin resistance, brain atrophy, and cognitive performance in late middle–aged adults. Diabetes Care 36(2):443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2012) HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res 41:801–807

    Article  Google Scholar 

  • Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31(20):7477–7485

    Article  CAS  PubMed  Google Scholar 

  • Yagihashi S, Mizukami H, Sugimoto K (2011) Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Invest 2(1):18–32

    Article  CAS  Google Scholar 

  • Yamane K, Yokono K, Okada Y (2000) Anaerobic glycolysis is crucial for the maintenance of neural activity in Guinea pig hippocampal slices. J Neurosci Methods 103(2):163–171

    Article  CAS  PubMed  Google Scholar 

  • Yonguc GN, Ozdemir MB, Küçükatay V, Sahiner M, Akcilar R, Adiguzel E, Akdogan I (2014) Memory function and total pyramidal neuron number of hippocampus in streptozotocin-induced diabetic rats. J Neurol Sci 31(3):461–473

    Google Scholar 

  • Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26(1):229–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Zhao LC, Xia HH, Xu CC, Wang D, Liu K, Lin L, Li XK, Yan ZH, Gao HC (2016) NMR-based metabolomics reveal a recovery from metabolic changes in the striatum of 6-OHDA-induced rats treated with basic fibroblast growth factor. Mol Neurobiol 53:6690–6697

  • Zheng H, Zheng YQ, Wang D, Cai AM, Lin QT, Zhao LC, Chen MJ, Deng MJ, Ye XJ, Gao HC (2017) Analysis of neuron-astrocyte metabolic cooperation in the brain of db/db mice with cognitive decline using 13C NMR spectroscopy. J Cereb Blood Flow Metab 37(1):332-343.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575105, 81501303, 21605115), and the Natural Science Foundation of Zhejiang Province (Nos. LY14H090014, LY15H180010, LY16H180009).

Author contributions

HCG, ZHY and HZ contributed to experimental design. DW, PTX and WYH contributed to animal experiment. HZ, LCZ and GHB contributed to NMR-based metabolomics. HZ and HCG contributed to data analysis, result interpretation and writing. All authors have read, revised and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchang Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Hong Zheng and Qiuting Lin contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Lin, Q., Wang, D. et al. NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction. Metab Brain Dis 32, 585–593 (2017). https://doi.org/10.1007/s11011-016-9949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9949-0

Keywords

Navigation