Skip to main content

Advertisement

Log in

Geldanamycin Reduces Aβ-Associated Anxiety and Depression, Concurrent with Autophagy Provocation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are generally characterized by abnormal aggregation and deposition of specific proteins. Amyloid beta (Aβ)-associated neurodegenerative disorder is characterized by an oxidative damage that, in turn, leads to some behavioral changes before the establishment of dementia such as depression and anxiety. In the current study, we investigated the effect of heat shock protein 90 inhibitor geldanamycin (GA) administration 24 h before Aβ injection. In our experiment, 7 days after Aβ injection, elevated plus maze and forced swimming test were conducted to assess anxiety and depression-like behaviors. Levels of autophagy markers and malondialdehyde (MDA) and also activity of catalase in the hippocampus of rats were evaluated. Our behavioral analyses demonstrated that GA pretreatment can significantly decrease anxiety- and depression-like behaviors in Aβ-injected rats. Also, levels of autophagy markers including Atg12, Atg7, and LC3-II increased, while MDA level decreased and the activity of catalase increased in rats pretreated with GA compared to Aβ-injected rats. Thus, we assumed that GA, at least in part, ameliorated Aβ-mediated anxiety and depression by inducing autophagy and improving antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221(2):117–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 94(2):147–160

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Crews F, Nixon K, Kim D, Joseph J, Shukitt‐Hale B, Qin L, Zou J (2006) BHT blocks NF‐κB activation and ethanol‐induced brain damage. Alcohol Clin Exp Res 30(11):1938–1949

    Article  CAS  PubMed  Google Scholar 

  • Dawson GR, Tricklebank MD (1995) Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci 16(2):33–36

    Article  CAS  PubMed  Google Scholar 

  • Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Xu H (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci 100(2):721–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Draper HH, Hadley M (1989) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  Google Scholar 

  • Einat H, Yuan P, Manji HK (2005) Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 165(2):172–180

    Article  CAS  PubMed  Google Scholar 

  • Eren İ, Nazıroğlu M, Demirdaş A (2007) Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 32(7):1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    Article  CAS  PubMed  Google Scholar 

  • Harkany T, O’Mahony S, Keijser J, Kelly JP, Kónya C, Borostyánkői ZA, Luiten PG (2001) β-Amyloid (1-42)-induced cholinergic lesions in rat nucleus basalis bidirectionally modulate serotonergic innervation of the basal forebrain and cerebral cortex. Neurobiol Dis 8(4):667–678

    Article  CAS  PubMed  Google Scholar 

  • He C, Klionsky DJ (2006) Autophagy and neurodegeneration. ACS Chem Biol 1(4):211–213

    Article  CAS  PubMed  Google Scholar 

  • Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE, Barrett JC (2005) Biomarkers of oxidative stress study ii: are oxidation products of lipids, proteins, and DNA markers of CCl 4 poisoning? Free Radic Biol Med 38(6):698–710

    Article  CAS  PubMed  Google Scholar 

  • Kamper EF, Chatzigeorgiou A, Tsimpoukidi O, Kamper M, Dalla C, Pitychoutis PΜ, Papadopoulou-Daifoti Z (2009) Sex differences in oxidant/antioxidant balance under a chronic mild stress regime. Physiol Behav 98(1):215–222

    Article  CAS  PubMed  Google Scholar 

  • Kara NZ, Toker L, Agam G, Anderson GW, Belmaker RH, Einat H (2013) Trehalose induced antidepressant-like effects and autophagy enhancement in mice. Psychopharmacology 229(2):367–375

    Article  CAS  PubMed  Google Scholar 

  • Kelly BL, Ferreira A (2006) β-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J Biol Chem 281(38):28079–28089

    Article  CAS  PubMed  Google Scholar 

  • Khalifeh S, Oryan S, Digaleh H, Shaerzadeh F, Khodagholi F, Maghsoudi N, Zarrindast MR (2015) Involvement of Nrf2 in development of anxiety-like behavior by linking Bcl2 to oxidative phosphorylation: estimation in rat hippocampus, amygdala, and prefrontal cortex. J Mol Neurosci 55(2):492–499

    Article  CAS  PubMed  Google Scholar 

  • Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathmechdis Mech Dis 3:427–455

    Article  CAS  Google Scholar 

  • Leliveld SR, Bader V, Hendriks P, Prikulis I, Sajnani G, Requena JR, Korth C (2008) Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease. J Neurosci 28(15):3839–3845

    Article  CAS  PubMed  Google Scholar 

  • Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1):3–5

    Article  CAS  PubMed  Google Scholar 

  • Lu A, Ran R, Parmentier‐Batteur S, Nee A, Sharp FR (2002) Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81(2):355–364

    Article  CAS  PubMed  Google Scholar 

  • Maccioni RB, Muñoz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32(5):367–381

    Article  CAS  PubMed  Google Scholar 

  • McLean PJ, Klucken J, Shin Y, Hyman BT (2004) Geldanamycin induces Hsp70 and prevents α-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun 321(3):665–669

    Article  CAS  PubMed  Google Scholar 

  • Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, Gozes I (2013) Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatr

  • Mirakhur A, Craig D, Hart DJ, McLlroy SP, Passmore AP (2004) Behavioural and psychological syndromes in Alzheimer’s disease. Int J Geriatr Psychiatr 19(11):1035–1039

    Article  CAS  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467

    Article  CAS  PubMed  Google Scholar 

  • Namekawa Y, Baba H, Maeshima H, Nakano Y, Satomura E, Takebayashi N, Arai H (2013) Heterogeneity of elderly depression: increased risk of Alzheimer’s disease and Aβ protein metabolism. Prog Neuro-Psychopharmacol Biol Psychiatr 43:203–208

    Article  CAS  Google Scholar 

  • Paxinos G, Watson CR (2007) The rat brain in stereotaxic coordinates. Elsevier Academic Press, San Diego

    Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  • Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 118(6):2190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pomara N, Bruno D, Sarreal AS, Hernando RT, Nierenberg J, Petkova E, Blennow K (2014) Lower CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly individuals with major depressive disorder. Am J Psychiatr

  • Porsolt RD, Le Pichon M, Jalfre ML (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  CAS  PubMed  Google Scholar 

  • Potter GG, Steffens DC (2007) Contribution of depression to cognitive impairment and dementia in older adults. Neurologist 13(3):105–117

    Article  PubMed  Google Scholar 

  • Rodrigues R, Petersen RB, Perry G (2014) Parallels between major depressive disorder and Alzheimer’s disease: role of oxidative stress and genetic vulnerability. Cell Mol Neurobiol 34(7):925–949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salam JN, Fox JH, DeTroy EM, Guignon MH, Wohl DF, Falls WA (2009) Voluntary exercise in C57 mice is anxiolytic across several measures of anxiety. Behav Brain Res 197(1):31–40

    Article  PubMed  Google Scholar 

  • Sarkaki A, Farbood Y, Badavi M, Khalaj L, Khodagholi F, Ashabi G (2015) Metformin improves anxiety-like behaviors through AMPK-dependent regulation of autophagy following transient forebrain ischemia. Metab Brain Dis 1–12

  • Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Rubinsztein DC (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43(1):19–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaerzadeh F, Motamedi F, Minai-Tehrani D, Khodagholi F (2014) Monitoring of neuronal loss in the hippocampus of Aβ-injected rat: autophagy, mitophagy, and mitochondrial biogenesis stand against apoptosis. Neruomol Med 16(1):175–190

    Article  CAS  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Selkoe DJ (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K (2012) Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci 32(30):10413–10422

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, He JC, Wang Y, Huang QY, Chen JF (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280(48):39962–39969

    Article  CAS  PubMed  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Steffens DC, Au R, Folstein M, Summergrad P, Yee J, Qiu WQ (2008) Amyloid-associated depression: a prodromal depression of Alzheimer disease? Arch Gen Psychiatry 65(5):542–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Teri L, Ferretti LE, Gibbons LE, Logsdon RG, McCurry SM, Kukull WA, Larson EB (1999) Anxiety in Alzheimer’s disease: prevalence and comorbidity. J Gerontol A: Biol Med Sci 54(7):M348–M352

    Article  CAS  Google Scholar 

  • Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13(7):805–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zare N, Motamedi F, Digaleh H, Khodagholi F, Maghsoudi N (2015) Collaboration of geldanamycin-activated P70S6K and Hsp70 against beta-amyloid-induced hippocampal apoptosis: an approach to long-term memory and learning. Cell Stress Chaperones 20(2):309–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is part of the PhD student’s thesis of N. Zare at the Shahid Beheshti University of Medical Sciences.

Conflict of Interest

The author declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Maghsoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, N., Khalifeh, S., Khodagholi, F. et al. Geldanamycin Reduces Aβ-Associated Anxiety and Depression, Concurrent with Autophagy Provocation. J Mol Neurosci 57, 317–324 (2015). https://doi.org/10.1007/s12031-015-0619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0619-1

Keywords

Navigation