Skip to main content
Log in

Glutathione metabolism enzymes in brain and liver of hyperphenylalaninemic rats and the effect of lipoic acid treatment

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is a disorder caused by a deficiency in phenylalanine hydroxylase activity, which converts phenylalanine (Phe) to tyrosine, leading to hyperphenylalaninemia (HPA) with accumulation of Phe in tissues of patients. The neuropathophysiology mechanism of disease remains unknown. However, recently the involvement of oxidative stress with decreased glutathione levels in PKU has been reported. Intracellular glutathione (GSH) levels may be maintained by the antioxidant action of lipoic acid (LA). The aim of this study was to evaluate the activity of the enzymes involved in the metabolism and function of GSH, such as glutathione peroxidase (GSH-Px), glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutamate-cysteine ligase (GCL), glutathione-S-transferase (GST) and GSH content in brain and liver of young rats subjected to a chemically induced model of HPA and the effect of LA for a week. In brain, the administration of Phe reduced the activity of the GSH-Px, GR and G6PD and LA prevented these effects totally or partially. GCL activity was increased by HPA and was not affect by LA antioxidant treatment. GST activity did not differ between groups. GSH content was increased by LA and decreased by HPA treatment in brain samples. Considering the liver, all parameters analyzed were increased in studied HPA animals and LA was able to hinder some effects except for the GCL, GST enzymes and GSH content. These results suggested that HPA model alter the metabolism of GSH in rat brain and liver, which may have an important role in the maintenance of GSH function in PKU although liver is not a directly affected organ in this disease. So, an antioxidant therapy with LA may be useful in the treatment of oxidative stress in HPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdin AA, Sarhan NI (2011) Intervention of mitochondrial dysfunction-oxidative stress-dependent apoptosis as a possible neuroprotective mechanism of α-lipoic acid against rotenone-induced parkinsonism and l-dopa toxicity. Neurosci Res 71(4):387–395

    Article  CAS  PubMed  Google Scholar 

  • Artuch R, Colome C, Vilaseca MA et al (2001) Plasma phenylalanine is associated with decreased serum ubiquinone-10 concentrations in phenylketonuria. J Inherit Metab Dis 24:359–366

    Article  CAS  PubMed  Google Scholar 

  • Aoyama K, Watabe M, Nakaki T (2008) Regulation of Neuronal Glutathione Synthesis. J Pharmacol Sci 108:227–238

    CAS  PubMed  Google Scholar 

  • Berti SL, Nasi GM, Garcia C, de Castro FL, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS, Wannmacher CMD (2012) Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27:79–89

    Article  CAS  PubMed  Google Scholar 

  • Bilska A, Włodek L (2005) Lipoic acid - the drug of the future? Pharmacol Rep 57(5):570–577

    CAS  PubMed  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  • Brigelius-Flohe´ R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  PubMed  Google Scholar 

  • Calberg I, Manervik B (1985) Glutathione Reductase. Methods Enzymol 113:484–490

    Article  Google Scholar 

  • Chung PM, Cappel RE, Gilbert HF (1991) Inhibition of glutathione disulfide reductase by glutathione. Arch Biochem Biophys 288(1):48–53

    Article  CAS  PubMed  Google Scholar 

  • de Souza GF, Saldanha GB, de Freitas RM (2010) Lipoic acid increases glutathione peroxidase, Na+, K + -atpase and acetylcholinesterase activities in rat hippocampus after pilocarpine-induced seizures? Arq Neuropsiquiatr 68(4):586–591

    Article  PubMed  Google Scholar 

  • Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB (1994) An Animal Model of Early-treated PKU. J Neurosci 14(5):3072–3082

    CAS  PubMed  Google Scholar 

  • Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Dickinson DA, Moellering DR, Iles KE et al (2003) Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 384:527–537

    Article  CAS  PubMed  Google Scholar 

  • dos Reis EA, Rieger E, de Souza SS, Rasia-Filho AA, Wannmacher CMD (2013) Effects of a co-treatment with pyruvate and creatine on dendritic spines in rat hippocampus and posterodorsal medial amygdala in a phenylketonuria animal model. Metab Brain Dis 28:509–517

    Article  CAS  PubMed  Google Scholar 

  • Ercal N, Aykin-Burns N, Gurer-Orhan H, Mcdonald JD (2002) Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med 32:906–911

    Article  CAS  PubMed  Google Scholar 

  • Favilli F, Marraccini P, Iantomasi T, Vincenzini MT (1997) Effect of orally administered glutathione on glutathione levels in some organs of rats: role of specific transporters. Br J Nutr 78:293–300

    Article  CAS  PubMed  Google Scholar 

  • Fonseca RR, Johnson WE, O’Brien SJ et al (2010) Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases. BMC Evol Biol 10:281

    Article  PubMed Central  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione S-Transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hagen TM, Ingersoll RT, Lykkesfeldt J et al (1999) (R)-α-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. Faseb J 13:411–418

    CAS  PubMed  Google Scholar 

  • Huerta-Olvera SG, Macías-Barragán J, Ramos-Márquez ME et al (2010) Alpha-lipoic acid regulates heme oxygenase gene expression and nuclear Nrf2 activation as a mechanism of protection against arsenic exposure in HepG2 cells. Envir Toxicol Pharmacol 29:144–149

    Article  CAS  Google Scholar 

  • Järvinen K, Soini Y, Kinnula VL (2003) γ-Glutamylcysteine Synthetase in Lung Cancer. Effect on Cell Viability. Methods Mol Med 74:211–222

    PubMed  Google Scholar 

  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients 4:1399–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kienzle-Hagen ME, Pederzolli CD, Sgaravatti AM et al (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586(3):344–352

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar M (1996) Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Exp Toxic Pathol 48:439–446

    Article  CAS  Google Scholar 

  • Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochem J 218:131–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lissi EA, Cáceres T, Videla LA (1986) Visible chemiluminescence from rat brain homogenates undergoing autoxidation. I. Effect of additives and products accumulation. Free Radic Biol Med 2(1):63–69

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu SC (1999) Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13(10):1169–1183

    CAS  PubMed  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luttges MW, Gerren RA (1979) Postnatal alpha-methylphenylalanine treatment effects on adult mouse locomotor activity and avoidance learning. Pharmacol Biochem Behav 11(5):493–498

    Article  CAS  PubMed  Google Scholar 

  • Mazzola PN, Karikas GA, Schulpis KH, Dutra-Filho CS (2013) Antioxidant treatment strategies for hyperphenylalaninemia. Metab Brain Dis. doi:10.1007/s11011-013-9414-2

    Google Scholar 

  • Ookhtens O, Kaplowitz N (1998) Role of the liver in intergorgan homeostasis of glutathione and cyst(e)ine. Semin Liver Dis 18:313–329

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the metabolic antioxidant α-lipoic acid. Free Rad Biol and Med 22:359–378

    Google Scholar 

  • Pietz J (1998) Neurological aspects of adult phenylketonuria. Curr Opin Neurol 11:679–688

    Article  CAS  PubMed  Google Scholar 

  • Reed MC, Thomas RL, Pavisic J, James SJ, Ulrich CM, Nijhon HF (2008) A mathematical model of glutathione metabolism. Theor Biol Med Model 5:8. doi:10.1186/1742-4682-5-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Samuel S, Kathirvel R, Jayavelu T, Chinnakkannu P (2005) Protein oxidative damage in arsenic induced rat brain: influence of DL-α-lipoic acid. Toxicol Lett 155:27–34

    Google Scholar 

  • Sanayama Y, Nagasaka H, Takayanagi M et al (2011) Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab 103(3):220–225

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, McKercher SR, Lipton SA (2013) NrF2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2013.07.022

    Google Scholar 

  • Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Seybolt SEJ (2010) Is it time to reassess alpha lipoic acid and niacinamide therapy in schizophrenia? Med Hypotheses 75(6):572–575

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Anand A, Srivastava PK (2012) Regulation and properties of glucose-6-phosphate dehydrogenase: A review. Int J Plant Physiol Biochem 4(1):1–19

    Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D et al (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Barschak AG, Deon M et al (2006) Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 21(4):287–296

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Barschak AG, Deon M et al (2009) Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci 27:243–247

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Vanzin CS, Biancini GB, Manfredini V, de Oliveira AB, Wayhs CA, Ribas GO, Giugliani L, Schwartz IV, Bohrer D, Garcia SC, Wajner M, Vargas CR (2011) Evidence that Lcarnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31(3):429–436

    Article  CAS  PubMed  Google Scholar 

  • Suh JH, Shenvi SV, Dixon BM et al (2004) Decline in transcriptional activity of Nrf2 causes age related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci 101:3381–3386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tateishi N, Higashi T, Naruse A, Nakashima K, Shiozaki H (1977) Rat liver glutathione: possible role as a reservoir of cysteine. J Nutr 107:51–60

    CAS  PubMed  Google Scholar 

  • Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2008) Novel Role for Glutathione S-Transferase: Regulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284(1):436–445

    Article  PubMed  Google Scholar 

  • Valdovinos-Flores C, Gosenbatt ME (2012) The role of amino acids transporters in GSH synthesis in the blood brain barrier and central nervous system. Neurochem Intern 61:405–414

    Article  CAS  Google Scholar 

  • Vargas CR, Wajner M, Sitta A (2011) Oxidative stress in phenylketonuric patients. Mol Genet Metab 104:S97–S99

    Article  CAS  PubMed  Google Scholar 

  • Vilaseca MA, Lambruschini N, Gómez-López L et al (2010) Quality of dietary control in phenylketonuric patients and its relationship with general intelligence. Nutr Hosp 25:60–66

    CAS  PubMed  Google Scholar 

  • Wagner AE, Ernst IMA, Birringer M, Sancak Ö, Barella L, Rimbach G (2012) A Combination of Lipoic Acid Plus Coenzyme Q10 Induces PGC1α, a Master Switch of Energy Metabolism, Improves Stress Response, and Increases Cellular Glutathione Levels in Cultured C2C12 Skeletal Muscle Cells. Oxidative Med Cell Longev. doi:10.1155/2012/835970

    Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Meth Enzymol 77:325–332

    Article  CAS  PubMed  Google Scholar 

  • White CC, Viernes H, Krejsa CM et al (2003) Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity. Anal Biochem 318:175–180

    Article  CAS  PubMed  Google Scholar 

  • Wojtkowiak-Giera A, Wandurska-Nowak E, Michalak M (2011) Changes in the activity and kinetics of mouse intestinal glutathione transferase during experimental trichinellosis. Parasitol Res 108:1309–1313

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grants from Brazilian National Research Council (CNPq), Programa de Núcleos de Excelência (PRONEX), CAPES, PROPESQ/UFRGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarsila Barros Moraes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, T.B., Dalazen, G.R., Jacques, C.E. et al. Glutathione metabolism enzymes in brain and liver of hyperphenylalaninemic rats and the effect of lipoic acid treatment. Metab Brain Dis 29, 609–615 (2014). https://doi.org/10.1007/s11011-014-9491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9491-x

Keywords

Navigation