Skip to main content
Log in

Behavioral changes and mitochondrial dysfunction in a rat model of schizophrenia induced by ketamine

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Evidence from the literature indicates that mitochondrial dysfunction occurs in schizophrenia and other psychiatric disorders. To produce an animal model that simulates psychotic symptoms analogous to those seen in schizophrenic patients, sub-anesthetic doses of N-methyl-D-aspartate (NMDA) receptor antagonists (such as ketamine) have been used. The aim of this study was to evaluate behavioral changes and mitochondrial dysfunction in rats administered ketamine for 7 consecutive days. Behavioral evaluation was performed using an activity monitor 1, 3 and 6 h after the last injection. The activities of mitochondrial respiratory chain complexes I, II, I-III and IV in multiple brain regions (prefrontal cortex, striatum and hippocampus) were also evaluated. Our results showed that hyperlocomotion occurred in the ketamine group 1 and 3 h after the last injection. Stereotypic movements were elevated only when animals were evaluated 1 h after receiving ketamine. In addition, we found that ketamine administration affects the respiratory chain, altering the activity of respiratory chain complexes in the striatum and hippocampus after 1 h, those in the prefrontal cortex and hippocampus after 3 h and those in the prefrontal cortex and striatum 6 h after the last administration of ketamine. These findings suggest that ketamine alters the behavior of rats and changes the activity of respiratory chain complexes in multiple brain regions at different time points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Battisti JJ, Shreffler CB, Uretsky NJ, Wallace LJ (2000) NMDA antagonists block expression of sensitization of amphetamine-and apomorphuneinduced stereotypy. Pharmacol Biochem Behav 67:241–246. doi:10.1016/S0091-3057(00)00324-5

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behavior: a possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:687–700. doi:10.1016/S0278-5846(03)00080-0

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D (2002) Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 83:1241–1251. doi:10.1046/j.1471-4159.2002.01263

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Laifenfeld D (2003) Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 59:273–296. doi:10.1016/S0074-7742(04)59011-6

    Article  Google Scholar 

  • Ben-Shachar D, Bonne O, Chisin R, Klein E, Lester H, Aharon-Peretz J et al (2007) Cerebral glucose utilization and platelet mitochondiral complex I activity in schizophrenia: a FDG-PET study. Prog Neupsychopharmacol Biol Psychiatry 31:807–813. doi:10.1016/j.pnpbp.2006.12.025

    Article  CAS  Google Scholar 

  • Birch-Machin MA, Briggs HL, Saborido AA, Bindoff LA, Turnbull DM (1994) An evaluation of the measurement of the activities of complexes I–IV in the respiratory chain of human skeletal muscle mitochondria. Biochem Med Metab Biol 51:35–42. doi:0885-4505/94

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4. doi:10.1074/jbc.R600031200

    Article  PubMed  CAS  Google Scholar 

  • Bowie CR, Harvey PD (2006) Schizophrenia from a neuropsychiatric perspective. Mt Sinai J Med 73:993–998

    PubMed  Google Scholar 

  • Bressan RA, Pilowsky LS (2003) Hipótese glutamatérgica da esquizofrenia. Rev Bras Psiq 25:177–183. doi:10.1590/S1516-44462003000300011

    Google Scholar 

  • Bubber P, Hartounian V, Gibsin GE, Blass JP (2010) Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur Neuropsychopharmacol 21:254–260. doi:10.1016/j.euroneuro.2010.10.007

    Google Scholar 

  • Bubeníková-Valešová V, Horáček J, Vrajová M, Höschl C (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 38:1014–1023. doi:10.1016/j.neubiorev.2008.03.012

    Article  Google Scholar 

  • Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. doi:10.1006/abbi.1996.0178

    Article  PubMed  CAS  Google Scholar 

  • Cavelier L, Jazin E, Eriksson I, Prince J, Bave U, Oreland L, Gyllensten U (1995) Decreased cytochrome c oxidase activity and lack of age related accumulation of mtDNA in brain of schizophrenics. Genomics 29:217–228. doi:10.1006/geno.1995.1234

    Article  PubMed  CAS  Google Scholar 

  • De Padua AC, Gama CS, Lobato MI. Psicofármacos. Artmed POA. 2005.

  • Di Donato S (2000) Disorders related to mitochondrial membranes: phatology of the respiratory chain and neurodegeneration. J Inheret Metab Dis 23:247–263. doi:10.1023/A:1005684029429

    Article  Google Scholar 

  • Duncan GE, Leipzig JN, Mailman RB, Lieberman JA (1998) Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 812:65–75. doi:10.1016/S0006-8993(98)00926-3

    Article  PubMed  CAS  Google Scholar 

  • Farber NB, Wozniak DF, Price MT, Labruyere J, Huss J, Peter HS, Olney JW (1995) Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia? Biol Psychiat 38:788–796. doi:10.1016/0006-3223(95)00046-1

    Article  PubMed  CAS  Google Scholar 

  • Fattal O, Budur K, Vaughan AJ, Franco K (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomat 47:1–7. doi:10.1176/appi.psy.47.1.1

    Article  Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM et al (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26

    Article  PubMed  CAS  Google Scholar 

  • Hitri A, O’Connor DA, Cohen JM, Keuler DJ, Deutsch SI (1993) Differentiation between MK-801-and apomorphine-induced stereotyped behaviors in mice. Clin Neuropharmacol 16:220–236

    Article  PubMed  CAS  Google Scholar 

  • Hunt MJ, Raynaud B, Garcia R (2006) Ketamine dose-dependently unduces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiat 60:1206–1214. doi:10.1016/j.biopsych.2006.01.020

    Article  PubMed  CAS  Google Scholar 

  • Karry R, Klein E, Ben-Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 55:676–684. doi:10.1016/j.biopsych.2003.12.012

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GF, Delaney R, Bremner JD (1994) Subanesthetic effects of the noncompetitive NMDA antagonists, ketamine, in humans. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Kung L, Roberts RC (1999) Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 31:67–75

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334. doi:10.1016/S0896-6273(00)00111-2

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacol 23:223–239. doi:10.1038/sj.npp.1395545

    Article  CAS  Google Scholar 

  • Littlewood CL, Jones N, O’Neill MJ, Mitchell SN, Tricklebank M, Williams SCR (2006) Mapping the central effects of ketamine in the rat using pharmacological MRI Psychopharmacol 186:64–81. doi:10.1007/s00213-006-0344-0

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Marcotte ER, Pearson DM, Srivastava LK (2001) Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 26:395–410

    PubMed  CAS  Google Scholar 

  • Maurer I, Moller HJ (1997) Inhibition of complex I by neuroleptics in normal human brain cortex parallels the extrapyramidal toxicity of neuroleptics. Mol Cell Biochem 174:255–259. doi:10.1023/A:1006872911332

    Article  PubMed  CAS  Google Scholar 

  • Maurer I, Zierz S, Möller HJ (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48:125–136. doi:10.1016/S0920-9964(00)00075-X

    Article  PubMed  CAS  Google Scholar 

  • Maxwell JC (2005) Party Drugs: properties, prevalence, patterns and problems. Subst Use Misus 40:1203–1240. doi:10.1081/JA-200066736

    Article  Google Scholar 

  • Meltzer HY, Bastani B, Ramirez L, Matsubara S (1989) Clozapine: new research on efficacy and mechanism of action. Eur Arch Psychiatry Neurol Sci 238:332–339

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM (2007) Antipsychotic safety and efficacy concerns. J Clin Psychiatry 68:20–26

    Article  PubMed  Google Scholar 

  • Nikam SS, Awasthi AK (2008) Evolution of schizophrenia drugs: a focus on dopaminergic systems. Curr Opin Investig Drugs 9:37–46

    PubMed  CAS  Google Scholar 

  • Park S, Holzman PS (1992) Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 49:975–982

    PubMed  CAS  Google Scholar 

  • Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JTJ, Griffin JL (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697. doi:10.1038/sj.mp.4001511

    Article  PubMed  CAS  Google Scholar 

  • Prince JA, Blennow K, Gottfries CG, Karlsson I, Oreland L (1997) Mitochondrial function in differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacol 21:372–379. doi:S0893-133X(99)00016-0

    Article  Google Scholar 

  • Reddy PH (2008) Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med 10:291–315

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH (2009) Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectr 14:8–13

    PubMed  Google Scholar 

  • Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2008) Mitchondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029. doi:10.1007/s11064-008-9865-8

    Article  PubMed  Google Scholar 

  • Robertson GS, Hori SE, Powell KJ (2006) Schizophrenia: an integrative approach to modelling a complex disorder. J Psyc Neurosci 31:157–167

    Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  • Strazielle C, Sturchler-Pierrat C, Staufenbiel M, Lalonde R (2003) Regional brain cytochrome oxidase activity in beta-amyloid precursor protein transgenic mice with the Swedish mutation. Neurosc 118:1151–1163. doi:10.1016/S0306-4522(03)00037-X

    Article  CAS  Google Scholar 

  • Swerdlow NR, Bakshi V, Waikar M, Taad N, Geyer MA (1998) Seroquel, clozapine and chlorpromazine restore sensorimotor gating in ketamine-treated rats. Psychopharmacol 140:75–80. doi:10.1007/s002130050741

    Article  CAS  Google Scholar 

  • Takeyama K, Yoshikawa M, Oka T, Kawaguchi M, Suzuki T, Hashimoto A (2006) Ketamine enhances the expression of serine racemase and D-amino acid oxidase mRNAs in rat brain. Eur J Pharmacol 540:82–86. doi:10.1016/j.ejphar.2006.04.021

    Article  PubMed  CAS  Google Scholar 

  • Tien AY, Eaton WW (1992) Psychopathologic precursors and sociodemographic risk factors for the schizophrenia syndrome. Arch Gen Psychiatry 49:37–46

    PubMed  CAS  Google Scholar 

  • Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610. doi:10.1016/S0361-9230(01)00528-7

    Article  PubMed  CAS  Google Scholar 

  • Van Den Buuse M, Garner B, Gogos A, Kusljic S (2005) Importance of animal models in schizophrenia research. Aust N Z J Psychiatry 39:550–557

    PubMed  Google Scholar 

  • Wood SJ, Yücel M, Pantelis C, Berk M (2009) Neurobiology of schizophrenia spectrum disorders: the role of oxidative stress. Ann Acad Med Singapore 38:396–401

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from CNPq, Instituto Cérebro e Mente, INCT and UNESC to AIZ, ELS, and JQ (CNPq Research Fellows).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra I. Zugno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, L., Fraga, D.B., De Luca, R.D. et al. Behavioral changes and mitochondrial dysfunction in a rat model of schizophrenia induced by ketamine. Metab Brain Dis 26, 69–77 (2011). https://doi.org/10.1007/s11011-011-9234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9234-1

Keywords

Navigation