Skip to main content

Advertisement

Log in

Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson´s disease

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

In the present work we measured blood levels of total homocysteine (tHcy), vitamin B12 and folic acid in patients with Parkinson´s disease (PD) and in age-matched controls and searched for possible associations between these levels with smoking, alcohol consumption, L-DOPA treatment and disease duration in PD patients. We initially observed that plasma tHcy levels were increased by around 30 % in patients affected by PD compared to controls. Linear correlation, multiple regression and comparative analyses revealed that the major determinant of the increased plasma concentrations of tHcy in PD patients was folic acid deficiency, whereas in controls tHcy levels were mainly determined by plasma vitamin B12 concentrations. We also observed that alcohol consumption, gender and L-DOPA treatment did not significantly alter plasma tHcy, folic acid and vitamin B12 levels in parkinsonians. Furthermore, disease duration was positively associated with tHcy levels and smoking was linked with a deficit of folic acid in PD patients. Considering the potential synergistic deleterious effects of Hcy increase and folate deficiency on the central nervous system, we postulate that folic acid should be supplemented to patients affected by PD in order to normalize blood Hcy and folate levels, therefore potentially avoiding these risk factors for neurologic deterioration in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56:730–736

    PubMed  CAS  Google Scholar 

  • Barack AJ, Beckenhauer HC, Kharbanda KK, Tuma DJ (2001) Chronic ethanol consumption increases homocysteine accumulation in hepatocytes. Alcohol 2:77–81

    Article  Google Scholar 

  • Bazzano LA, He J, Munter P, Vupputuri S, Whelton PK (2003) Relationship between cigarette smoking and novel risk factors for cardiovascular disease in United Stated. Ann Intern Med 138:891–897

    PubMed  Google Scholar 

  • Beulens JW, Sierkasma A, Schoafsma G, Kok FJ, Struys EA, Jakobs C, Hendriks HF (2005) Kinetics of Hcy metabolism after moderate alcohol consumption. Alcohol Clin Exp Res 29:739–745

    Article  PubMed  CAS  Google Scholar 

  • Bladini F, Fancellu R, Martignonim E, Magiagalli A, Pacchetti C, Samuele A, Nappi G (2001) Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 47:1102–1104

    Google Scholar 

  • Blasco C, Caballeria J, Deulofen R, Lligona A, Pares A, Lluis JM, Gual A, Rodes J (2005) Prevalence and mechanisms of hyperhomocysteinemia in chronic alcoholics. Alcohol Clin. Exp. 29:739–745

    Article  CAS  Google Scholar 

  • Bleich S, Degner D, Bandelow B, Von Ahsen N, Ruther E, Kornhuber J (2000) Plasma homocysteine is a predictor of alcohol withdrawal seizures. NeuroReport 11:2749–2752

    Article  PubMed  CAS  Google Scholar 

  • Blount BC, Mack MM, Wehr CM, Macgregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implication for cancer and neuronal damage. Proc Natl Acad Sci USA 94:3290–3295

    Article  PubMed  CAS  Google Scholar 

  • Bottiglieri T (1996) Folate, vitamin B12 and neuropsychiatric disorders. Nutr Rev 54:382–390

    Article  PubMed  CAS  Google Scholar 

  • Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I (2006) Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 29:3–20

    Article  PubMed  CAS  Google Scholar 

  • Cher CL, Huanh RF, Chen YH, Cheng JT, Liu TZ (2001) Folate deficiency-induced oxidative stress and apoptosis are cognitive mediated via homocysteine-dependent overproduction of hydrogen peroxide and enhenced activation of NF-kappa B in human Hep G2 cells. Biomed Pharmacother 55:434–442

    Article  Google Scholar 

  • Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM (1998) Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 55:1449–1455

    Article  PubMed  CAS  Google Scholar 

  • de Bree A, Verscuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determinants the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  • de Rijk MC, Breteler MM, den Breeijen JH, Launer LJ, Grobbee DE, van der Meché FG, Hofman A (1997) Dietary antioxidants and Parkinson disease. The Rotterdam Study. Arch Neurol 54:762–765

    PubMed  Google Scholar 

  • Diaz-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57:1422–1427

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Mattson MP (1999) Dietary restriction and 2-deoxy-glucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57:195–206

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Ladenhein B, Culter RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergicneurons in models of Parkinson’s disease. J Neurochem. 80:101–110

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Macgregor R, Alexoff D, Shea C, Schlyer D, Wolf AP, Warner D, Zezulkova I, Cilento R (1996) Inhibition of Monoamine-Oxidase-B in the Brains of Smokers. Nature 379:733–736

    Article  PubMed  CAS  Google Scholar 

  • Grieve A, Butcher SP, Griffiths R (1992) Symaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity. J Neurosci Res 32:60–68

    Article  PubMed  CAS  Google Scholar 

  • Hancock DB, Martin ER, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK (2007) Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease. Arch Neurol 64:576–580

    Article  PubMed  Google Scholar 

  • Hankey GJ, Eikelboom JW (1999) Homocysteine and vascular disease. Lancet 354:407–413

    Article  PubMed  CAS  Google Scholar 

  • Hassin-Bauer S, Coben O, Vakil E, Sela B, Nitan Z, Schwartz R, Chapman J, Tanne D (2006) Plasma homocysteine levels and Parkinson’s disease: disease progression, carotid intima-media thickness and neuropsychiatric complications. Clin Neuropharmacol 29:305–311

    Article  CAS  Google Scholar 

  • Herbert V, Zalusky R (1962) Interrrelation of vitamin B12 and folic metabolism: folic acid clearance studies. J Clin Invest 41:1263–1276

    Article  PubMed  CAS  Google Scholar 

  • Hultberg B, Berdlung M, Aandersson A, Frank A (1993) Elevated plasma homocysteine in alcoholics. Alcohol Clin Exp Res 17:687–689

    Article  PubMed  CAS  Google Scholar 

  • Isobe C, Murata T, Sato C, Terayama Y (2005) Increase of total homocysteine concentration in cereprospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci 15:1836–1843

    Article  CAS  Google Scholar 

  • Jacques PF, Bostom AG, Wilsin PW, Rich S, Rosenberg IH, Selhub J (2001) Determinants of plasma total homocysteine in the Framingham Offspring cohort. Am J Clin Nutr 73:613–621

    PubMed  CAS  Google Scholar 

  • Jansson B, Jankovic J (1985) Low Cancer Rates among Patients with Parkinson’s Disease. Ann Neurol 17:505–509

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1998) Oxidative Mechanisms in Nigral Cell Death in Parkinson’s Disease. Mov Disord 13:24–34

    PubMed  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative Stress and the Pathogenesis of Parkinson’s Disease. Neurology 47:161–170

    Google Scholar 

  • Kado DM, Karlamangla AS, Huang MH, Troen A, Rowe JW, Selhub J, Seeman TE (2005) Homocysteine versus the vitamins folate, B6 and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med 118:161–167

    Article  PubMed  CAS  Google Scholar 

  • Kirch DG, Alho AM, Wyatt RJ (1988) Hypothesis: a Nicotine-Dopamine Interaction Linking Smoking with Parkinson’s Disease and Tardive Dyskinesia. Cell Mol Neurobiol 8:285–291

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughney N, Lee J, Evans M, Mattson MP (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in animal models of Alzheimer’s disease. J Neurosci. 22:1752–1762

    PubMed  CAS  Google Scholar 

  • Kuhn W, Roebroek R, Blom H, Van Oppenraaj D, Przuntek H, Kretschmer A, Buttner T, Woitalla D, Muller T (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40:225–227

    Article  PubMed  CAS  Google Scholar 

  • Kuhn W, Hummel T, Woitalla D, Muller T (2001) Plasma homocysteine and MTHFR C677T genotype in levodopa-trated patients with PD. Neurology 56:281–282

    PubMed  CAS  Google Scholar 

  • Lamberti P, Zoccolella S, Armenise E, Lamberti SV, Fraddosio A, De Mari M, Iliceto G, Livrea P (2005) Hyperhomocysteinemia in L-dopa treated Parkinson’s disease patients: effect of cobalamin and folate administration. Eur J Neurol 12:365–368

    Article  PubMed  CAS  Google Scholar 

  • Langston JW (1998) Epidemiology versus genetics in Parkinson’s disease: progress in resolving an age-old debate. Ann Neurol 44:S45–S52

    Article  PubMed  CAS  Google Scholar 

  • Lau LM, Koudstaal PJ, Van Meurs JBJ, Uitterlinder AG, Hofman A, Breteler MMB (2005) Methylenetetrahydrofolate reductase C677T genotype and PD. Ann Neurol 57:927–930

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz JW, Ziembowicz A, Matyja E, Stafiej A, Zieminska E (2003) Homocysteine-evoked 45Ca release in the rabbit hippocampus is mediated by both NMDA and group I metabotropic glutamate receptors: in vivo microdialysis study. Neurochem Res 2:259–269

    Article  Google Scholar 

  • Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U.S.A. 94:5923–5928

    Article  PubMed  CAS  Google Scholar 

  • Magera MJ, Lacey JM, Casetta B, Rinaldo P (1999) Method for the determination of total homocysteine in plasma and urine by stable isotope dilution and electrospray tandem mass spectrometry. Clin Chem 45:1517–1522

    PubMed  CAS  Google Scholar 

  • Marsden CD (1994) Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:672–681

    Article  PubMed  CAS  Google Scholar 

  • Mooijaart SP, Gussekloo J, Frolich M, Jolles J, Stott DJ, Westendorp RG, de Craen AJ (2005) Homocysteine, vitamin B12, and folic acid and the risk of cognitive decline in old age: the Leiden 85-Plus study. Am J Clin Nutr 82:866–871

    PubMed  CAS  Google Scholar 

  • Muller T, Werne B, Fowler B, Kuhn W (1999) Nigral endothelial disfunction, homocysteine, and Parkinson’s disease. Lancet 354:126–127

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Woitalla D, Kuhn W (2003) Benefit of folic acid supplementation in parkinsonian patients treated qith levodopa. J Neurol Neurosurg Psychiatry 74:549

    Article  PubMed  CAS  Google Scholar 

  • O’ Suilleabhain PE, Sung V, Hernandez C, Laccritz L, Dewey RB Jr, Bottiglieri T, Diaz-Arrastia R (2004) Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch Neurol 61:865–868

    Article  Google Scholar 

  • Obeid R, Herrman W (2006) Mechanisms of homocysteine neurotoxixity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  PubMed  CAS  Google Scholar 

  • Quik M (2004) Smoking, nicotine and Parkinson’s disease. Trends Neurosci 27:561–568

    Article  PubMed  CAS  Google Scholar 

  • Religa D, Czyewski K, Stycznska M, Peplonska B, Lokk J, Chodakowska-Zebrowska M, Stepein K, Winblad B, Barcikowska M (2006) Hyperhomocysteinemia and methylenetetrahydrofolate reductase polymorphism in patients with Parkinson’s disease. Neurosci Lett 404:56–60

    Article  PubMed  CAS  Google Scholar 

  • Rogers JD, Sanchez-Saffon A, Frol AB, Diaz-Arrastia R (2003) Elevated plasma homocysteine levels in pacients treated with levodopoa: association with vascular disease. Arch Neurol 60:59–64

    Article  PubMed  Google Scholar 

  • Sachdev PS (2005) Homocysteine and brain atrophy. Prog Neuropsychopharmacol Biol Psychiatry 29:1152–1161

    Article  PubMed  CAS  Google Scholar 

  • Sachdev PS, Valenzuela M, Wang XL, Looi JC, Brodaty H (2002) Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology 58:1539–1541

    PubMed  CAS  Google Scholar 

  • Saw SM, Yuan JM, Ong CN, Arakawa K, Lee HP, Coetzee GA, Yu MC (2001) Genetic, dietary and other lifestyle determinants of plasma homocysteine concentrations in middle-aged and older Chinese men and woman in Singapore. Am J Clin Nutr 73:232–239

    PubMed  CAS  Google Scholar 

  • Scott JM, Dinn JJ, Wilson P, Weir DGP (1981) Pathogenesis of subacute combined degeneration: a result of methylgroup deficiency. Lancet 2:334–337

    Article  PubMed  CAS  Google Scholar 

  • Selhub J (2006) The many facets if hiperhomocysteinemia: studies from the Framingham Cohorts. J Nutr 136:1726–1730

    Google Scholar 

  • Silva HR, Khan NL, Wood NW (2000) The genetics of Parkinson’s disease. Curr Opin Genet Dev 10:292–298

    Article  PubMed  Google Scholar 

  • Siniscalchi A, Gallelli L, Mercuri NB, Ibbadu GF, Sarro G (2006) Role of lifestyle factors on plasma homocysteine levels in Pakinson’s disease patients treated with levodopa. Nutr Neuosci 9:11–6

    Article  CAS  Google Scholar 

  • Streck EL, Zugno AI, Tagliari B, Wannmacher C, Wajner M, Wyse AT (2002) Inhibition of Na+, K+− ATPase activity by the metabolites accumulating in homocystinuria. Metab Brain Dis 17:83–91

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Delwing D, Tagliari B, Matte C, Wannmacher CM, Wajner M, Wyse AT (2003) Brain energy metabolism is compromised by the metabolites accumulating in homocystinuria. Neurochem Int 43:597–602

    Article  PubMed  CAS  Google Scholar 

  • Tatton NA (2000) Increased caspase 3 and bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43

    Article  PubMed  CAS  Google Scholar 

  • Taylor CA, Saind-Hilaire MH, Cupples LA, Thomas CA, Burchard AE, Felman RG, Myers RH (1999) Environmental, medical, and family history risk factors for Parkinson’s disease: a New England base control study. Am J Med Genet 88:742–749

    Article  PubMed  CAS  Google Scholar 

  • Todorovic Z, Dzoljic E, Novakovic I, Mirkovic D, Stojanovic R, Nesic Z, Krajinovic M, Prostran M, Kostci V (2006) Homocysteine serum levels and MTHFH C677T genotyoe in patients with Parkinson’s disease, with and without levopoda therapy. J Neurol Sci 248:56–61

    Article  PubMed  CAS  Google Scholar 

  • Upchurch GR, Welch GN, Fabian AJ, Freedman JE, Johnson JE, Keany JF, Loscalzo J (1997) Homocysteine decreases bioavailable nitrie oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  PubMed  CAS  Google Scholar 

  • Van der Gaag M, Ubbink JB, Sillanaukee P, Nikkari S, Endriks HFJ (2000) Effect of consumption of red wine, spirits and beer on serum homocysteine. Lancet 355:1522

    Article  PubMed  Google Scholar 

  • Wall RT, Harlam JM, Harker LA, Striker GE (1980) Homocysteine induced endothelial cell injury in vitro: a model fot the study of vascular injury. Thromb Res 18:113–121

    Article  PubMed  CAS  Google Scholar 

  • Yasui K, Kowa H, Nakaso K, Takeshima T, Nakashima K (2000) Plasma homocysteine and MTHFR C6677T genotype in levopoda treated patients with PD. Neurology 55:437–440

    PubMed  CAS  Google Scholar 

  • Zoccolella S, Lamberti P, Iliceto G, Diroma C, Armenise E, Defazio G, Lamberti SV, Fraddosio A, de Mari M, Livrea P (2005) Plasma homocysteine levels in L-dopa-treated Parkinson’s disease patients with cognitive dysfunctions. Clin Chem Lab Med 43:1107–1110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful by the financial support of CNPq, FAPERGS, PRONEX and the FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, E.F., Busanello, E.N.B., Miglioranza, A. et al. Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson´s disease. Metab Brain Dis 24, 257–269 (2009). https://doi.org/10.1007/s11011-009-9139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-009-9139-4

Keywords

Navigation