Skip to main content

Advertisement

Log in

Phenotype-dependent susceptibility of cholinergic neuroblastoma cells to neurotoxic inputs

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

A preferential loss of brain cholinergic neurons in the course of Alzheimer's disease and other encephalopathies is accompanied by a proportional impairment of acetyl-CoA synthesizing capacity in affected brains. Particular susceptibility of cholinergic neurons to neurodegeneration might results from insufficient supply of acetyl-CoA for energy production and acetylcholine synthesis in these conditions. Exposure of SN56 cholinergic neuroblastoma cells to dibutyryl cAMP and retinoic acid for 3 days caused their morphologic differentiation along with the increase in choline acetyltransferase activity, acetylcholine content and release, calcium content, and the expression of p75 neurotrophin receptors. Acetyl-CoA content correlated inversely with choline acetyltransferase activity in different lines of SN56 cells. In differentiated cells, aluminum (1 mM), amyloid β25–35 (0.001 mM), and sodium nitroprusside (1 mM), caused much greater decrease of pyruvate dehydrogenase and choline acetyltransferase activities and cell viability than in nondifferentiated ones. Aluminum (1 mM) aggravated suppressory effects of amyloid β on choline acetyltransferase and pyruvate dehydrogenase activities and viability of differentiated cells. Similar additive inhibitory effects were observed upon combined exposure of differentiated cells to sodium nitroprusside and amyloid β25–35. None or much smaller suppressory effects of these neurotoxins were observed in nondifferentiated cells. Increase in the fraction of nonviable differentiated cells positively correlated with losses of choline acetyltransferase, pyruvate dehydrogenase activities, and cytoplasmic cytochrome c content in different neurotoxic conditions. These data indicate that highly differentiated cholinergic neurons may be more susceptible to aluminum and other neurotoxins than the nondifferentiated ones due to relative shortage of acetyl-CoA, increased content of Ca2+, and expression of p75 receptors, yielding increase in cytoplasmic cytochrome c and subsequently grater rate of death of the former ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Figure 10.

Similar content being viewed by others

References

  • Aremu DA, Meshitsuka S (2005) Accumulation of aluminum by primary cultured astrocytes from aluminum amino acid complex and its apoptotic effect. Brain Res 1031:284–296

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Sheffield R, Mishizen-Eberz AJ, Carter TL, Rissman RA, Mizukami K, Ikonomovic MD (2003) Plasticity of glutamate and GABAA receptors in the hippocampus of patients with Alzheimer' disease. Cell Mol Neurobiol 23:491–505

    Article  PubMed  CAS  Google Scholar 

  • Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN (2003) Amyloid-β: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Res Rev 43:1–16

    Article  PubMed  CAS  Google Scholar 

  • Berse B, Lopez-Coviella I, Blusztajn JK (1999) Activation of TrkA by nerve growth factor upregulates expression of the cholinergic gene locus but attenuates the response to ciliary neurothrophic growth factor. Biochem J 342:301–308

    Article  PubMed  CAS  Google Scholar 

  • Bielarczyk H, Szutowicz A (1989) Evidence for the regulatory function of synaptoplasmic acetyl-CoA in acetylcholine synthesis in nerce endings. Biochem J 262:377–380

    PubMed  CAS  Google Scholar 

  • Bielarczyk H, Jankowska A, Madziar B, Matecki A, Michno A, Szutowicz A (2003a) Differential toxicity of nitric oxide, aluminum, and amyloid β-peptide in SN56 cholinergic cells from mouse septum. Neurochem Int 42:323–331

    Article  PubMed  CAS  Google Scholar 

  • Bielarczyk H, Tomaszewicz M, Madziar B, wikowska J, Pawełczyk T, Szutowicz A (2003b) Relationships between cholinergic phenotype and acetyl-CoA level in hybrid murine neuroblastoma cells of septal origin. J Neurosci Res 73:717–721

    Article  PubMed  CAS  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer`s disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn JK, Venturini A, Jackson DA, Lee HJ, Wainer BH (1992) Acetylocholine synthesis and release is enhanced by dibutyryl cyclic AMP in neuronal cell line derived from mouse septum. J Neurosci Res 12:793–799

    CAS  Google Scholar 

  • Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, Mathis CA, Moore RY, DeKosky ST (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer's disease: An in vivo positron tomography study. Arch Neurol 60:1745–1748

    Article  PubMed  Google Scholar 

  • Bradford M (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Fass U, Panickar K, Personett D, Bryan D, Williams K, Gonzales J, Sugaya K, McKinney M (2000) Differential vulnerability of primary cultured cholinergic neurons to nitric oxide excess. Neuro Report 11:931–936

    PubMed  CAS  Google Scholar 

  • Flaten TP (2001) Aluminum as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Res Bull 55:187–196

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F (1975) A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem 24:407–409

    Article  PubMed  CAS  Google Scholar 

  • Gibson GE, Park LCH, Sheu KFR, Blass JP, Calingasan NY (2000) The α-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int 36:97–112

    Article  PubMed  CAS  Google Scholar 

  • Gil-Bea FJ, Garcia-Aloza M, Dominguez J, Marcom B, Ramirez MJ (2005) Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit. Neurosci Lett 375:37–41

    Article  PubMed  CAS  Google Scholar 

  • Hoshi M, Takashima A, Murayama M, Yasutake K, Yoshida N, Ishiguro K, Hoshino T, Imahori K (1997) Nontoxic amyloid-β-peptide1-42 suppresses acetylcholine synthesis. J Biol Chem 272:2038–2041

    Article  PubMed  CAS  Google Scholar 

  • House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C (2004) Aluminum, iron, zinc and cooper influence the in vitro formation of amyloid fibrils of Aβ42 in a manner which may have consequences for metal chelation therapy in Alzheimer's disease. J Alzheimers Dis 6:291–301

    PubMed  CAS  Google Scholar 

  • Hynd MR, Scott HL, Dodd PR (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer' disease. Neurochem Int 45:583–595

    Article  PubMed  CAS  Google Scholar 

  • Jankowska A, Madziar B, Tomaszewicz M, Sztutowicz A (2000) Acute and chronic effects of aluminium on acetyl-CoA and acetylcholine metabolism in differentiated and nondifferentiated SN56 cholinergic cells. J Neurosci Res 62:615–622

    Article  PubMed  CAS  Google Scholar 

  • Julka D, Sandhir R, Gill KD (1995) Altered cholinergic metabolism in rat CNS following aluminum exposure: implications on learning performance. J Neurochem 65:2157–2164

    Article  PubMed  CAS  Google Scholar 

  • Lai JCK, DiLorenzo JC, Scheu KFR (1985) Pyruvate dehydrogenase complex is inhibited in calcium loaded cerebro-cortical mitochondria. Neurochem Res 13:1043–1048

    Article  Google Scholar 

  • Mamidipudi V, Wooten MW (2002) Dual role for p75NTR signaling in survival and cell death: Can intracellular mediators provide an explanation. J Neurosci Res 272:2038–2041

    Google Scholar 

  • Nayak P (2002) Aluminum: Impacts and diseases. Environ Res 89:101–115

    Article  PubMed  CAS  Google Scholar 

  • Oh JD, Chartisathian K, Chase TN, Butcher LL (2000) Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res 853:174–185

    Article  PubMed  CAS  Google Scholar 

  • Olesen OF, Dago L, Mikkelsen JD (1998) Amyloid beta neurotoxicity in cholinergic but not in serotoninergic phenotype of RN46A cells. Brain Res Mol Brain Res 57:266–274

    Article  PubMed  CAS  Google Scholar 

  • Pappas BA, Bayley PJ, Bui BK, Hansen LA, Thal LJ (2000) Choline acetyltransferase activity and cognitive domain scores of Alzheimer patients. Neurobiol Aging 21:11–17

    Article  PubMed  CAS  Google Scholar 

  • Pike CJ, Walencewicz-Waserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CJ (1995) Structure –ac-tivity analyses of β-amyloid peptides: Contributions of Aβ25-35 region to aggregation and neurotoxicity. J Neurochem 64:253–265

    Article  PubMed  CAS  Google Scholar 

  • Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Pratico D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VMY (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16:1138–1140

    PubMed  CAS  Google Scholar 

  • Scarpa A (1979) Measurement of cation transport with metallochromic indicators. In: Press Colowick SP, Kaplan NO, Fleischer S, Packer L (eds). Methods in enzymology, vol 56. Academic, New York, pp 301–338

    Google Scholar 

  • Schildknecht PHPA, Vidal BC (2004) Aluminium triggers necrosis and apoptosis in V79 cells. Toxicol Environ Chem 27:1–10

    Google Scholar 

  • Sheu KFR, Kim YT, Blass JP, Weksler ME (1985) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer's disease brain. Ann Neurol 17:444–449

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz A (2001) Aluminum, NO, and nerve growth factor neurotoxicity in cholinergic neurons. J Neurosci Res 66:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz A, Bielarczyk H (1987) Elimination of CoASH interference from acetyl-CoA cycling assay by maleic anhydride. Anal Biochem 164:292–296

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz A, Stępień M, Piec G (1981) Determination of pyruvate dehydrogenase and acetyl-CoA synthetase using citrate synthase. Anal Biochem 115:81–87

    Article  PubMed  CAS  Google Scholar 

  • Szutowicz A, Tomaszewicz M, Jankowska A, Madziar B, Bielarczyk H (2000) Acetyl-CoA metabolism in cholinergic neurons and their susceptibility to neurotoxic inputs. Met Brain Dis 15:29–44

    Article  CAS  Google Scholar 

  • Terry RD Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's disease-realted cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  PubMed  CAS  Google Scholar 

  • Torreilles F, Salman-Tabcheh S, Guerin MC, Torreiles J (1999) Neurodegenerative disorders: The role of peroxynitrite. Brain Res Rev 30:153–163

    Article  PubMed  CAS  Google Scholar 

  • Tucek S (1993) Short-term control of the synthesis of acetylcholine. Prog Biophys Mol Biol 60:59–69

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Green PS, Simpkins W (2001) Estradiol protects against ATP depletion, mitochondria memebrane potential decline and generation of reactive oxygen species induced by 3-nitropropionic acid in SK-N-SH human neuroblastoma cells. J Neurochem 77:804–811

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Research and Informatization project 2 P05A 02626 and Medical University of Gdańsk project St-57. Authors thank Dr J.K. Blusztajn for SN56 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Szutowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szutowicz, A., Bielarczyk, H., Gul, S. et al. Phenotype-dependent susceptibility of cholinergic neuroblastoma cells to neurotoxic inputs. Metab Brain Dis 21, 143–155 (2006). https://doi.org/10.1007/s11011-006-9007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-006-9007-4

Keywords

Navigation