Skip to main content

Advertisement

Log in

Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer’s Disease

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential trace element for human health and plays an important role in the development and maintenance of central nervous system functions. Se deficiency has been associated with cognitive decline and increased oxidative stress. The increase in oxidative stress is one of the hypotheses for the emergence and worsening of neurodegenerative diseases, such as Alzheimer’s disease (AD). To investigate the neuroprotective effects of organic Se compounds in human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons-like. The SH-SY5Y cells were differentiated into cholinergic neuron-like with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). AD was mimicked exposing the cells to okadaic acid (OA) and beta-amyloid protein (Aβ). The neuroprotective effect of organic Se compounds, selenomethionine (SeMet) and Ebselen, was evaluated through cell viability tests, acetylcholinesterase and antioxidant enzyme activities, and detection of reactive oxygen species (ROS). None of the SeMet concentrations tested protected against the toxic effect of OA + Aβ. On the other hand, previous exposure to 0.1 and 1 µM Ebselen protected cells from the toxic effect of OA + Aβ. Cell differentiation induced by RA and BDNF exposure was effective, showing characteristics of neuronal cells, and pointing to a promising model of AD. Ebselen showed a protective effect, but more studies are needed to identify the mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Sharma K (2019) Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep 20:1479–1487. https://doi.org/10.3892/mmr.2019.10374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oliveira CS, Piccoli BC, Nogara PA, Pereira ME, Carvalho KAT, Skalny AV, Tinkov AA, Aschner M, Rocha JBT (2021) Selenium neuroprotection in neurodegenerative disorders. In Handbook of Neurotoxicity, 2nd ed.; Kostrzewa RM, Ed.; Springer: Cham, Switzerland, 2021; Volume 1, p. 35. https://doi.org/10.1007/978-3-031-15080-7_238

  3. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet 397:1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16:508–518. https://doi.org/10.2174/1570159X15666170720095240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buchman AS, Bennett DA (2011) Loss of motor function in preclinical Alzheimer’s disease. Expert Rev Neurother 11:665–676. https://doi.org/10.1586/ern.11.57

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kueper JK, Lizotte DJ, Montero-Odasso M, Speechley M, Alzheimer’s Disease Neuroimaging Initiative (2020) Cognition and motor function: the gait and cognition pooled index. PLoS ONE 15(9):e0238690. https://doi.org/10.1371/journal.pone.0238690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koenig AM, Arnold SE, Streim JE (2016) Agitation and irritability in Alzheimer’s Disease: evidenced-based treatments and the black-box warning. Curr Psychiatry Rep 18:3. https://doi.org/10.1007/s11920-015-0640-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A (2016) Selenium in the therapy of neurological diseases. Where is it Going? Curr Neuropharmacol 14:282–299. https://doi.org/10.2174/1570159x14666151223100011

    Article  CAS  PubMed  Google Scholar 

  9. Pedrini S, Gupta VB, Hone E, Doecke J, O’Bryant S, James I, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Martins RN, AIBL Research Group (2017) A blood-based biomarker panel indicates IL-10 and IL-12/23p40 are jointly associated as predictors of β-amyloid load in an AD cohort. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-14020-9

    Article  CAS  Google Scholar 

  10. Cardoso BR, Cominetti C, Cozzolino SM (2013) Importance and management of micronutrient deficiencies in patients with Alzheimer’s disease. Clin Interv Aging 8:531–542. https://doi.org/10.2147/CIA.S27983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mehri A (2020) Trace elements in human nutrition (II) - an update. Int J Prev Med 11:2. https://doi.org/10.4103/ijpvm.IJPVM_48_19

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oliveira CS, Piccoli BC, Aschner M, Rocha JBT (2017) Chemical speciation of selenium and mercury as determinant of their neurotoxicity. In Neurotoxicity of Metals; Aschner M, Costa L, Eds.; Springer: Cham, Switzerland, Volume 18, pp. 53–83. https://doi.org/10.1007/978-3-319-60189-2_4

  13. Rocha JBT, Piccoli BC, Oliveira CS (2017) Biological and chemical interest in selenium: a brief historical account. Arkivoc 457–491. https://doi.org/10.24820/ark.5550190.p009.784

  14. Hassan W, Oliveira CS, Noreen H, Kamdem JP, Nogueira CW, Rocha JBT (2016) Organoselenium compounds as potential neuroprotective therapeutic agents. Curr Org Chem 20:218–231

    Article  CAS  Google Scholar 

  15. Nogara PA, Oliveira CS, Rocha JBT (2020) Chemistry and pharmacology of synthetic organoselenium compounds. Organoselenium Chem., De Gruyter, Berlin, 305–346. https://doi.org/10.1515/9783110625110-008

  16. Rocha JB, Oliveira CS, Nogara PA (2017) Toxicology and anticancer activity of synthetic organoselenium compounds. Organoselenium Compounds in Biology and Medicine. Synthesis, Biological and Therapeutic Treatments, pp 342–376

  17. Cardoso BR, Bandeira VS, Jacob-Filho W, Cozzolino SMF (2014) Selenium status in elderly: relation to cognitive decline. J Trace Elem Med Biol 28:422–426. https://doi.org/10.1016/j.jtemb.2014.08.009

    Article  CAS  Google Scholar 

  18. Cardoso BR, Apolinário D, Bandeira VS, Busse AL, Magaldi RM, Jacob-Filho W, Cozzolino SMF (2016) Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. Eur J Nutr 55:107–116. https://doi.org/10.1007/s00394-014-0829-2

    Article  CAS  Google Scholar 

  19. Pereira ME, Souza JV, Galiciolli MEA, Sare F, Vieira GS, Kruk IL, Oliveira CS (2022) Effects of selenium supplementation in patients with mild cognitive impairment or Alzheimer’s Disease: a systematic review and meta-analysis. Nutrients 14:3205. https://doi.org/10.3390/nu14153205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santi C, Scimmi C, Sancineto L (2021) Ebselen and Analogues: pharmacological properties and synthetic strategies for their preparation. Molecules 26:4230. https://doi.org/10.3390/molecules26144230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nogara PA, Oliveira CS, Pereira ME, Bortoli M, Orian L, Aschner M, Rocha JBT (2022) Therapeutic applications of low-molecular-weight thiols and selenocompounds. In: Redox Chemistry and Biology of Thiols. Alvarez B, Comini MA, Salinas G, Trujillo M (Eds), Academic Press, Chap. 27, pp. 643–677. https://doi.org/10.1016/B978-0-323-90219-9.00005-4

  22. Zhang ZH, Wu QY, Zheng R, Chen C, Chen Y, Liu Q, Hoffmann PR, Ni JZ, Song GL (2017) Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. J Neurosci 37:2449–2462. https://doi.org/10.1523/JNEUROSCI.3229-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  23. Martini F, Rosa SG, Klann IP, Fulco B, Carvalho FB, Rahmeier FL, Fernandes MC, Nogueira CW (2019) A multifunctional compound Ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J Psychiatr Res 109:107–117. https://doi.org/10.1016/j.jpsychires.2018.11.021

    Article  PubMed  Google Scholar 

  24. Cogo SC, Nascimento TGFC, Pinhatti FAB, Junior NF, Rodrigues BS, Cavalli LR, Elifio-Esposito S (2020) An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med 245:1637–1647. https://doi.org/10.1177/1535370220949237

    Article  CAS  Google Scholar 

  25. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. https://doi.org/10.1007/978-1-62703-640-5_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Medeiros LM, De Bastiani MA, Rico EP, Schonhofen P, Pfaffenseller B, Wollenhaupt-Aguiar B, Grun L, Barbé-Tuana F, Zimmer ER, Castro M, Parsons RB, Klamt F (2019) Cholinergic differentiation of human neuroblastoma SH-SY5Y cell line and its potential use as an in vitro model for Alzheimer’s Disease studies. Mol Neurobiol 56:7355–7367. https://doi.org/10.1007/s12035-019-1605-3

    Article  CAS  PubMed  Google Scholar 

  27. Lopes FM, Schröder R, da Frota ML Jr, Zanotto-Filho A, Müller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, Fernandes M, Klamt F (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94. https://doi.org/10.1016/j.brainres.2010.03.102

    Article  CAS  PubMed  Google Scholar 

  28. Trzaska KA, Rameshwar P (2011) Dopaminergic neuronal differentiation protocol for human mesenchymal stem cells. Methods Mol Biol 698:295–303. https://doi.org/10.1007/978-1-60761-999-4_22

    Article  CAS  PubMed  Google Scholar 

  29. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  30. Keen JH, Habig WH, Jakoby WB (1976) Mechanism for the several activities of the glutathione S-transferases. J Biol Chem 251:6183–6188

    Article  CAS  PubMed  Google Scholar 

  31. Gao R, Yuan Z, Zhao Z, Gao X (1998) Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelect Bioenerg 45:41–45. https://doi.org/10.1016/S0302-4598(98)00072-5

    Article  CAS  Google Scholar 

  32. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  34. Tetz LM, Kamau PW, Cheng AA, Meeker JD, Loch-Caruso R (2013) Troubleshooting the dichlorofluorescein assay to avoid artifacts in measurement of toxicant-stimulated cellular production of reactive oxidant species. J Pharmacol Toxicol Methods 67:56–60. https://doi.org/10.1016/j.vascn.2013.01.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jämsä A, Hasslund K, Cowburn RF, Bäckström A, Vasänge M (2004) The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation. Biochem Biophys Res Commun 319:993–1000. https://doi.org/10.1016/j.bbrc.2004.05.075

    Article  CAS  PubMed  Google Scholar 

  36. Shipley MM, Mangold CA, Szpara ML (2016) Differentiation of the SH-SY5Y human neuroblastoma cell line. J Vis Exp 108:53193. https://doi.org/10.3791/53193

    Article  CAS  Google Scholar 

  37. Hromadkova L, Bezdekova D, Pala J, Schedin-Weiss S, Tjernberg LO, Hoschl C, Ovsepian SV (2020) Brain-derived neurotrophic factor (BDNF) promotes molecular polarization and differentiation of immature neuroblastoma cells into definitive neurons. Biochim Biophys Acta Mol Cell Res 1867:118737. https://doi.org/10.1016/j.bbamcr.2020.118737

    Article  CAS  PubMed  Google Scholar 

  38. Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimer’s Dis 20:1069–1082. https://doi.org/10.3233/JAD-2010-091363

    Article  CAS  Google Scholar 

  39. Duly A, Kao F, Teo WS, Kavallaris M (2022) βIII-tubulin gene regulation in health and disease. Front Cell Dev Biol 10:851542. https://doi.org/10.3389/fcell.2022.851542

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kamat PK, Nath C (2015) Okadaic acid: a tool to study regulatory mechanisms for neurodegeneration and regeneration in Alzheimer’s disease. Neural Regen Res 10:365–367. https://doi.org/10.4103/1673-5374.153679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rostami J, Mothes T, Kolahdouzan M, Eriksson O, Moslem M, Bergström J, Ingelsson M, O’Callaghan P, Healy LM, Falk A, Erlandsson A (2021) Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. J Neuroinflammation 18:124. https://doi.org/10.1186/s12974-021-02158-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kamat PK, Tota S, Rai S, Shukla R, Ali S, Najmi AK, Nath C (2012) Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. Eur J Pharmacol 690:90–98. https://doi.org/10.1016/j.ejphar.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  43. Kaushal A, Wani WY, Bal A, Gill KD, Kaur J (2019) Okadaic acid and hypoxia-induced dementia model of Alzheimer’s type in rats. Neurotox Res 35:621–634. https://doi.org/10.1007/s12640-019-0005-9

    Article  CAS  PubMed  Google Scholar 

  44. Zhang ZH, Wu QY, Zheng R, Chen C, Chen Y, Liu Q, Hoffmann PR, Ni JZ, Song GL (2017) Selenomethionine mitigates Cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s Disease Mouse Model. J Neurosci 37(9):2449–2462. https://doi.org/10.1523/JNEUROSCI.3229-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li X, Shi Q, Xu H, Xiong Y, Wang C, Le L, Lian J, Wu G, Peng F, Liu Q, Du X (2022) Ebselen Interferes with Alzheimer’s Disease by Regulating Mitochondrial Function. Antioxidants (Basel) 11(7):1350. Published 2022 Jul 11. https://doi.org/10.3390/antiox11071350

  46. Nogara PA, Pereira ME, Orian L, Oliveira CS, Rocha JBT (2023) The Long Story of Ebselen: From About One Century of its Synthesis to Clinical Trials. In: Vito Lippolis; Claudio Santi; Eder J. Lenardão; Antonio L. Braga. (Org.). The Long Story of Ebselen: From About One Century of its Synthesis to Clinical Trials. 1ed. p. 567–591

  47. Klann IP, Martini F, Rosa SG, Nogueira CW (2020) Ebselen reversed peripheral oxidative stress induced by a mouse model of sporadic Alzheimer’s disease. Mol Biol Rep 47(3):2205–2215. https://doi.org/10.1007/s11033-020-05326-5

    Article  CAS  PubMed  Google Scholar 

  48. Zhu W, Liu Y, Zhang W, Fan W, Wang S, Gu JH, Sun H, Liu F (2021) Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging 13:11705–11726. https://doi.org/10.18632/aging.202865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reyes L, Bishop DP, Hawkins CL, Rayner BS (2019) Assessing the efficacy of Dietary Selenomethionine supplementation in the setting of Cardiac Ischemia/Reperfusion Injury. Antioxid (Basel Switzerland) 8:546. https://doi.org/10.3390/antiox8110546

    Article  CAS  Google Scholar 

  50. Kajander EO, Harvima RJ, Kauppinen L, Akerman KK, Martikainen H, Pajula RL, Kärenlampi SO (1990) Effects of selenomethionine on cell growth and on S-adenosylmethionine metabolism in cultured malignant cells. Biochem J 267:767–774. https://doi.org/10.1042/bj2670767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wambi CO, Sanzari JK, Sayers CM, Nuth M, Zhou Z, Davis J, Finnberg N, Lewis-Wambi JS, Ware JH, El-Deiry WS, Kennedy AR (2009) Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat Res 172:175–186. https://doi.org/10.1667/RR1708.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nuth M, Kennedy AR (2013) Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress. Oncol Lett 6:35–42. https://doi.org/10.3892/ol.2013.1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Costa NS, Lima LS, Oliveira FAM, Galiciolli MEA, Manzano MI, Garlet QI, Irioda AC, Oliveira CS (2023) Antiproliferative Effect of Inorganic and Organic Selenium Compounds in breast cell lines. Biomedicines 11:1346. https://doi.org/10.3390/biomedicines11051346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi H, Liu S, Miyake M, Liu KJ (2006) Ebselen induced C6 glioma cell death in oxygen and glucose deprivation. Chem Res Toxicol 19:655–660. https://doi.org/10.1021/tx0502544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song G, Zhang Z, Wen L, Chen C, Shi Q, Zhang Y, Ni J, Liu Q (2014) Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer’s disease. J Alzheimer’s Dis 41:85–99. https://doi.org/10.3233/JAD-131805

    Article  CAS  Google Scholar 

  56. Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790:1441–1447. https://doi.org/10.1016/j.bbagen.2009.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie Y, Tan Y, Zheng Y, Du X, Liu Q (2017) Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer’s disease mice. J Biol Inorg Chem 22:851–865. https://doi.org/10.1007/s00775-017-1463-2

    Article  CAS  PubMed  Google Scholar 

  58. Li X, Shi Q, Xu H, Xiong Y, Wang C, Le L, Lian J, Wu G, Peng F, Liu Q, Du X (2022) Ebselen interferes with Alzheimer’s disease by regulating mitochondrial function. Antioxidants 11:1350. https://doi.org/10.3390/antiox11071350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933. https://doi.org/10.1093/brain/awy132

    Article  PubMed  PubMed Central  Google Scholar 

  60. Farzi MA, Sadigh-Eteghad S, Ebrahimi K, Talebi M (2019) Exercise improves recognition memory and acetylcholinesterase activity in the beta amyloid-induced rat model of Alzheimer’s disease. Ann Neurosci 25:121–125. https://doi.org/10.1159/000488580

    Article  PubMed  Google Scholar 

  61. Campanari ML, García-Ayllón MS, Blazquez-Llorca L, Luk WK, Tsim K, Sáez-Valero J (2014) Acetylcholinesterase protein level is preserved in the Alzheimer’s brain. J Mol Neurosci 53:446–453. https://doi.org/10.1007/s12031-013-0183-5

    Article  CAS  PubMed  Google Scholar 

  62. García-Ayllón MS, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-Amyloid. Front Mol Neurosci 4:22. https://doi.org/10.3389/fnmol.2011.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neurosci Res 45(1):117–127. https://doi.org/10.1016/s0168-0102(02)00201-8

    Article  CAS  PubMed  Google Scholar 

  64. Martini F, Bruning CA, Soares SM, Nogueira CW, Zeni G (2015) Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition. Curr Pharm Des 21:920–924. https://doi.org/10.2174/1381612820666141014124319

    Article  CAS  PubMed  Google Scholar 

  65. Aras M, Altaş M, Meydan S, Nacar E, Karcıoğlu M, Ulutaş KT, Serarslan Y (2014) Effects of ebselen on ischemia/reperfusion injury in rat brain. Int J Neurosci 124(10):771–776. https://doi.org/10.3109/00207454.2013.879581

    Article  CAS  PubMed  Google Scholar 

  66. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Strafaci JA, Freedman ML (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150:40–44. https://doi.org/10.1006/exnr.1997.6750

    Article  CAS  PubMed  Google Scholar 

  67. Angelucci F, Baiocco P, Brunori M, Gourlay L, Morea V, Bellelli A (2005) Insights into the catalytic mechanism of glutathione S-transferase: the lesson from Schistosoma haematobium. Structure 13:1241–1246. https://doi.org/10.1016/j.str.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  68. Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M (2015) Glutathione transferases and neurodegenerative diseases. Neurochem Int 82:10–18. https://doi.org/10.1016/j.neuint.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  69. Ianiski FR, Alves CB, Souza AC, Pinton S, Roman SS, Rhoden CR, Alves MP, Luchese C (2012) Protective effect of meloxicam-loaded nanocapsules against amyloid-β peptide-induced damage in mice. Behav Brain Res 230(1):100–107. https://doi.org/10.1016/j.bbr.2012.01.055

    Article  CAS  PubMed  Google Scholar 

  70. Wilhelm EA, Bortolatto CF, Jesse CR, Luchese C (2014) Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity. Biol Trace Elem Res 162(1–3):200–210. https://doi.org/10.1007/s12011-014-0137-y

    Article  CAS  PubMed  Google Scholar 

  71. Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15:1957–1997. https://doi.org/10.1089/ars.2010.3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Unsal C, Oran M, Albayrak Y, Aktas C, Erboga M, Topcu B, Uygur R, Tulubas F, Yanartas O, Ates O, Ozen OA (2016) Neuroprotective effect of ebselen against intracerebroventricular streptozotocin-induced neuronal apoptosis and oxidative stress in rats. Toxicol Ind Health 32(4):730–740. https://doi.org/10.1177/0748233713509429

    Article  CAS  PubMed  Google Scholar 

  73. Garlet QI, Haskel MVL, Pereira RP, da Silva WCFN, da Rocha JBT, Oliveira CS, Bonini JS (2019) Delta-aminolevulinate dehydratase and glutathione peroxidase activity in Alzheimer’s disease: a case-control study. EXCLI J 18:866–875. https://doi.org/10.17179/excli2019-1749

    Article  PubMed  PubMed Central  Google Scholar 

  74. Martorell P, Bataller E, Llopis S, Gonzalez N, Alvarez B, Montón F, Ortiz P, Ramón D, Genovés S (2013) A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity. PLoS ONE 8:e63283. https://doi.org/10.1371/journal.pone.0063283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and the Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP).

Funding

Not applied.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MEP, ACI, and CSO; data collection: MEP and CSO; analysis and interpretation of results: MEP, LSL, NSC, JVS, JFS, ICG, and CSO; draft manuscript preparation: MEP, LSL, NSC, ACI, and CSO.

Corresponding author

Correspondence to Cláudia Sirlene Oliveira.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.E., Lima, L.S., Souza, J.V. et al. Evaluation of the Neuroprotective Effect of Organic Selenium Compounds: An in Vitro Model of Alzheimer’s Disease. Biol Trace Elem Res 202, 2954–2965 (2024). https://doi.org/10.1007/s12011-023-03893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03893-9

Keywords

Navigation