Skip to main content
Log in

The role of MACF1 on acute myeloid leukemia cell proliferation is involved in Runx2-targeted PI3K/Akt signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is a type of hematologic diseases, which is related to abnormal genes. The aberrant microtubule actin cross-linking factor 1 (MACF1) is associated with progression of multiple tumors by initiating cell proliferation. Nevertheless, the function and action mechanism of MACF1 in AML cell proliferation remain mostly unknown. Our study aimed to explore the influence of MACF1 on AML cell proliferation by CCK-8 and EdU staining assays. Moreover, we aimed to explore the effect of MACF1 on downstream Runx2 and the PI3K/Akt signaling. MACF1 expression in AML patients was predicted by bioinformatics analysis. Cells were transfected with si-con, si-MACF1 or Runx2 using Lipofectamine 2000. Upregulated MACF1 was found in AML patients and predicted worse overall survival. MACF1 expression was upregulated in AML cells compared with that in hematopoietic stem and progenitor cells. MACF1 silencing reduced AML cell proliferation. Runx2 level was increased in AML cells, and decreased by silencing MACF1. Runx2 upregulation rescued MACF1 silencing-mediated inhibition of proliferation. MACF1 downregulation inhibited activation of the PI3K/Akt pathway by decreasing Runx2. Activation of the PI3K/Akt pathway abrogated the suppressive role of MACF1 downregulation in AML cell proliferation. In conclusion, MACF1 knockdown decreased AML cell proliferation by reducing Runx2 and inactivating the PI3K/Akt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pelcovits A, Niroula R (2020) Acute myeloid leukemia: a review. R I Med J 103(3):38–40

    Google Scholar 

  2. Estey EH (2018) Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol 93(10):1267–1291

    Article  PubMed  Google Scholar 

  3. Blackburn LM, Bender S, Brown S (2019) Acute leukemia: diagnosis and treatment. Semin Oncol Nurs 35(6):150950

    Article  PubMed  Google Scholar 

  4. Prada-Arismendy J, Arroyave JC, Rothlisberger S (2017) Molecular biomarkers in acute myeloid leukemia. Blood Rev 31(1):63–76

    Article  CAS  PubMed  Google Scholar 

  5. Cusseddu R, Robert A, Cote JF (2021) Strength through unity: the power of the mega-scaffold MACF1. Front Cell Dev Biol 9:641727

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hu L, Xiao Y, Xiong Z, Zhao F, Yin C, Zhang Y et al (2017) MACF1, versatility in tissue-specific function and in human disease. Semin Cell Dev Biol 69:3–8

    Article  CAS  PubMed  Google Scholar 

  7. Miao Z, Ali A, Hu L, Zhao F, Yin C, Chen C et al (2017) Microtubule actin cross-linking factor 1, a novel potential target in cancer. Cancer Sci 108(10):1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao W, Yang H, Chai J, Xing L (2021) RUNX2 as a promising therapeutic target for malignant tumors. Cancer Manag Res 13:2539–2548

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schnerch D, Lausch E, Becker H, Felthaus J, Pfeifer D, Mundlos S et al (2014) Up-regulation of RUNX2 in acute myeloid leukemia in a patient with an inherent RUNX2 haploinsufficiency and cleidocranial dysplasia. Leuk Lymphoma 55(8):1930–1932

    Article  CAS  PubMed  Google Scholar 

  10. Sun CC, Li SJ, Chen ZL, Li G, Zhang Q, Li DJ (2019) Expression and prognosis analyses of runt-related transcription factor family in human leukemia. Mol Ther Oncolytics 12:103–111

    Article  CAS  PubMed  Google Scholar 

  11. Qiu WX, Ma XL, Lin X, Zhao F, Li DJ, Chen ZH et al (2020) Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway. J Cell Mol Med 24(1):317–327

    Article  CAS  PubMed  Google Scholar 

  12. Hu L, Su P, Yin C, Zhang Y, Li R, Yan K et al (2018) Microtubule actin crosslinking factor 1 promotes osteoblast differentiation by promoting beta-catenin/TCF1/Runx2 signaling axis. J Cell Physiol 233(2):1574–1584

    Article  CAS  PubMed  Google Scholar 

  13. Cohen-Solal KA, Boregowda RK, Lasfar A (2015) RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 14:137

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu H, Jiang T, Ren K, Li ZL, Ren J, Wu G et al (2018) RUNX2 plays an oncogenic role in esophageal carcinoma by activating the PI3K/AKT and ERK signaling pathways. Cell Physiol Biochem 49:217–225

    Article  CAS  PubMed  Google Scholar 

  15. Tandon M, Chen Z, Pratap J (2014) Runx2 activates PI3K/Akt signaling via mTORC2 regulation in invasive breast cancer cells. Breast Cancer Res 16:R16

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nepstad I, Hatfield KJ, Gronningsaeter IS, Reikvam H (2020) The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci 21(8):2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klegeris A, Bissonnette CJ, McGeer PL (2003) Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol 139(4):775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kayser S, Levis MJ (2018) Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol 180(4):484–500

    Article  PubMed  Google Scholar 

  20. Quick QA (2018) Microtubule-actin crosslinking factor 1 and plakins as therapeutic drug targets. Int J Mol Sci 19(2):368

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang X, Jian X, Dou J, Wei Z, Zhao F (2020) Decreasing microtubule actin cross-linking factor 1 inhibits melanoma metastasis by decreasing epithelial to mesenchymal transition. Cancer Manag Res 12:663–673

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Q, Luan Q, Zhu H, Zhao Y, Ji J, Wu F et al (2021) Circular RNA circ_0005774 contributes to proliferation and suppresses apoptosis of acute myeloid leukemia cells via circ_0005774/miR-192-5p/ULK1 ceRNA pathway. Biochem Biophys Res Commun 551:78–85

    Article  CAS  PubMed  Google Scholar 

  23. Wu F, Yin C, Qi J, Duan D, Jiang X, Yu J et al (2020) miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia. Hum Cell 33(2):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu L, Su P, Li R, Yan K, Chen Z, Shang P et al (2015) Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells. BMB Rep 48(10):583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jing GY, Zheng XZ, Ji XX (2021) lncRNA HAND2-AS1 overexpression inhibits cancer cell proliferation in hepatocellular carcinoma by downregulating RUNX2 expression. J Clin Lab Anal 35(4):e23717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou M, Zhang P, Zhao Y, Liu R, Zhang Y (2021) Overexpressed circRANBP17 acts as an oncogene to facilitate nasopharyngeal carcinoma via the miR-635/RUNX2 axis. J Cancer 12(14):4322–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo Z, Zhou K, Wang Q, Huang Y, Ji J, Peng Y et al (2021) The transcription factor RUNX2 fuels YAP1 signaling and gastric cancer tumorigenesis. Cancer Sci 112:3533–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Darici S, Alkhaldi H, Horne G, Jorgensen HG, Marmiroli S, Huang X (2020) Targeting PI3K/Akt/mTOR in AML: rationale and clinical evidence. J Clin Med 9(9):2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Annageldiyev C, Tan SF, Thakur S, Dhanyamraju PK, Ramisetti SR, Bhadauria P et al (2020) The PI3K/AKT pathway inhibitor ISC-4 induces apoptosis and inhibits growth of leukemia in preclinical models of acute myeloid leukemia. Front Oncol 10:393

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qu Y, Wang Y, Wang P, Lin N, Yan X, Li Y (2020) Overexpression of long noncoding RNA HOXA-AS2 predicts an adverse prognosis and promotes tumorigenesis via SOX4/PI3K/AKT pathway in acute myeloid leukemia. Cell Biol Int 44(8):1745–1759

    Article  CAS  PubMed  Google Scholar 

  31. Shi M, Yang R, Lin J, Wei QI, Chen L, Gong W et al (2021) LncRNA-SNHG16 promotes proliferation and migration of acute myeloid leukemia cells via PTEN/PI3K/AKT axis through suppressing CELF2 protein. J Biosci 46:4

    Article  CAS  PubMed  Google Scholar 

  32. Han M, Chen L, Wang Y (2018) miR-218 overexpression suppresses tumorigenesis of papillary thyroid cancer via inactivation of PTEN/PI3K/AKT pathway by targeting Runx2. Onco Targets Ther 11:6305–6316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pranavkrishna S, Sanjeev G, Akshaya RL, Rohini M, Selvamurugan N (2021) Regulation of Runx2 and its signaling pathways by microRNAs in breast cancer metastasis. Curr Protein Pept Sci 22:534–547

    Article  CAS  PubMed  Google Scholar 

  34. Lin X, Xiao Y, Chen Z, Ma J, Qiu W, Zhang K et al (2019) Microtubule actin crosslinking factor 1 (MACF1) knockdown inhibits RANKL-induced osteoclastogenesis via Akt/GSK3beta/NFATc1 signalling pathway. Mol Cell Endocrinol 494:110494

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

PW and JZ conducted the experiments and wrote the manuscript. HZ collected and analyzed the data. FZ collected the data and designed and supervised the study.

Corresponding author

Correspondence to Ping Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhang, J., Zhang, H. et al. The role of MACF1 on acute myeloid leukemia cell proliferation is involved in Runx2-targeted PI3K/Akt signaling. Mol Cell Biochem 478, 433–441 (2023). https://doi.org/10.1007/s11010-022-04517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04517-x

Keywords

Navigation