Skip to main content

Advertisement

Log in

The circ_FAM53B-miR-183-5p-CCDC6 axis modulates the malignant behaviors of papillary thyroid carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Papillary thyroid carcinoma (PTC) is a common thyroid malignancy. Circular RNAs (circRNAs) have been implicated in the development of PTC. Here, we explored the function and mechanism of circRNA family with sequence similarity 53, member B (circ_FAM53B) in PTC pathogenesis. Circ_FAM53B, microRNA (miR)-183-5p and coiled-coil domain containing 6 (CCDC6) levels were gauged by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or Western blotting. The direct relationship between miR-183-5p and circ_FAM53B or CCDC6 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data showed that circ_FAM53B expression was reduced in PTC tissues and cells. Circ_FAM53B expression restrained proliferation, migration, and invasion and triggered apoptosis of PTC cells, as well as hindered HUVEC tube formation. Circ_FAM53B repressed miR-183-5p expression. MiR-183-5p re-expression reversed the effects of circ_FAM53B on cell behaviors. MiR-183-5p targeted and inhibited CCDC6, and circ_FAM53B upregulated CCDC6 through miR-183-5p competition. MiR-183-5p knockdown repressed cell proliferation, migration, invasion, and tube formation and facilitated apoptosis by upregulating CCDC6. Furthermore, circ_FAM53B reduced tumor growth in vivo. Collectively, our findings suggest that circ_FAM53B affects PTC cell biological behaviors via the miR-183-5p-CCDC6 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

Abbreviations

PTC:

Papillary thyroid carcinoma

circRNAs:

Circular RNAs

CCDC6:

Coiled-coil domain containing 6

GEO:

GSE93522 Gene Expression Omnibus

UTR:

Untranslated region

PDCD4:

Programmed cell death 4

CREB1:

CAMP response element‑binding protein 1

References

  1. Cabanillas ME, McFadden DG, Durante C (2016) Thyroid cancer. Lancet 388:2783–2795. https://doi.org/10.1016/S0140-6736(16)30172-6

    Article  CAS  PubMed  Google Scholar 

  2. Abdullah MI, Junit SM, Ng KL, Jayapalan JJ, Karikalan B, Hashim OH (2019) Papillary thyroid cancer: genetic alterations and molecular biomarker investigations. Int J Med Sci 16:450–460. https://doi.org/10.7150/ijms.29935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iniguez-Ariza NM, Brito JP (2018) Management of low-risk papillary thyroid cancer. Endocrinol Metab (Seoul) 33:185–194. https://doi.org/10.3803/EnM.2018.33.2.185

    Article  Google Scholar 

  4. Ren H, Liu Z, Liu S, Zhou X, Wang H, Xu J, Wang D, Yuan G (2018) Profile and clinical implication of circular RNAs in human papillary thyroid carcinoma. PeerJ 6:e5363. https://doi.org/10.7717/peerj.5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Q, Pan LZ, Hu M, Ma JY (2020) Molecular network-based identification of circular RNA-associated ceRNA network in papillary thyroid cancer. Pathol Oncol Res 26:1293–1299. https://doi.org/10.1007/s12253-019-00697-y

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Li H, Ye X, Ji A, Fu X, Wu H, Zeng X (2020) Hsa_circ_0000231 knockdown inhibits the glycolysis and progression of colorectal cancer cells by regulating miR-502-5p/MYO6 axis. World J Surg Oncol 18:255. https://doi.org/10.1186/s12957-020-02033-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jin X, Wang Z, Pang W, Zhou J, Liang Y, Yang J, Yang L, Zhang Q (2018) Upregulated hsa_circ_0004458 contributes to progression of papillary thyroid carcinoma by inhibition of miR-885-5p and activation of RAC1. Med Sci Monit 24:5488–5500. https://doi.org/10.12659/MSM.911095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun D, Liu J, Zhou L (2019) Upregulation of circular RNA circ-FAM53B predicts adverse prognosis and accelerates the progression of ovarian cancer via the miR-646/VAMP2 and miR-647/MDM2 signaling pathways. Oncol Rep 42:2728–2737. https://doi.org/10.3892/or.2019.7366

    Article  CAS  PubMed  Google Scholar 

  9. Peng N, Shi L, Zhang Q, Hu Y, Wang N, Ye H (2017) Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PLoS ONE 12:e0170287. https://doi.org/10.1371/journal.pone.0170287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zembska A, Jawiarczyk-Przybylowska A, Wojtczak B, Bolanowski M (2019) MicroRNA expression in the progression and aggressiveness of papillary thyroid carcinoma. Anticancer Res 39:33–40. https://doi.org/10.21873/anticanres.13077

    Article  CAS  PubMed  Google Scholar 

  11. Hitu L, Gabora K, Bonci EA, Piciu A, Hitu AC, Stefan PA, Piciu D (2020) MicroRNA in papillary thyroid carcinoma: a systematic review from 2018 to June 2020. Cancers (Basel). https://doi.org/10.3390/cancers12113118

    Article  Google Scholar 

  12. Wei C, Song H, Sun X, Li D, Song J, Hua K, Fang L (2015) miR-183 regulates biological behavior in papillary thyroid carcinoma by targeting the programmed cell death 4. Oncol Rep 34:211–220. https://doi.org/10.3892/or.2015.3971

    Article  CAS  PubMed  Google Scholar 

  13. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42. https://doi.org/10.1080/15476286.2015.1128065

    Article  PubMed  Google Scholar 

  14. Leone V, Mansueto G, Pierantoni GM, Tornincasa M, Merolla F, Cerrato A, Santoro M, Grieco M, Scaloni A, Celetti A, Fusco A (2010) CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1. Oncogene 29:4341–4351. https://doi.org/10.1038/onc.2010.179

    Article  CAS  PubMed  Google Scholar 

  15. Jia M, Shi Y, Li Z, Lu X, Wang J (2019) MicroRNA-146b-5p as an oncomiR promotes papillary thyroid carcinoma development by targeting CCDC6. Cancer Lett 443:145–156. https://doi.org/10.1016/j.canlet.2018.11.026

    Article  CAS  PubMed  Google Scholar 

  16. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97. https://doi.org/10.1093/nar/gkt1248

    Article  CAS  PubMed  Google Scholar 

  17. Sadeghi A, Roudi R, Mirzaei A, Zare Mirzaei A, Madjd Z, Abolhasani M (2019) CD44 epithelial isoform inversely associates with invasive characteristics of colorectal cancer. Biomark Med 13:419–426. https://doi.org/10.2217/bmm-2018-0337

    Article  CAS  PubMed  Google Scholar 

  18. Iwakawa HO, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665. https://doi.org/10.1016/j.tcb.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  19. Fagin JA, Wells SA Jr (2016) Biologic and clinical perspectives on thyroid cancer. N Engl J Med 375:1054–1067. https://doi.org/10.1056/NEJMra1501993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi E, Ye J, Zhang R, Ye S, Zhang S, Wang Y, Cao Y, Dai W (2020) A combination of circRNAs as a diagnostic tool for discrimination of papillary thyroid cancer. Onco Targets Ther 13:4365–4372. https://doi.org/10.2147/OTT.S247796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Li H, Wei C, Ding J, Lu J, Pan G, Mao A (2020) circFAT1(e2) promotes papillary thyroid cancer proliferation, migration, and invasion via the miRNA-873/ZEB1 axis. Comput Math Methods Med 2020:1459368. https://doi.org/10.1155/2020/1459368

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Z, Huang X, Liu A, Xu J, Lai J, Guan H, Ma J (2021) Circ_PSD3 promotes the progression of papillary thyroid carcinoma via the miR-637/HEMGN axis. Life Sci 264:118622. https://doi.org/10.1016/j.lfs.2020.118622

    Article  CAS  PubMed  Google Scholar 

  23. Lou W, Ding B, Wang J, Xu Y (2020) The involvement of the hsa_circ_0088494-miR-876-3p-CTNNB1/CCND1 axis in carcinogenesis and progression of papillary thyroid carcinoma. Front Cell Dev Biol 8:605940. https://doi.org/10.3389/fcell.2020.605940

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miao F, Zhu J, Chen Y, Tang N, Wang X, Li X (2016) MicroRNA-183-5p promotes the proliferation, invasion and metastasis of human pancreatic adenocarcinoma cells. Oncol Lett 11:134–140. https://doi.org/10.3892/ol.2015.3872

    Article  CAS  PubMed  Google Scholar 

  25. Shang A, Wang X, Gu C, Liu W, Sun J, Zeng B, Chen C, Ji P, Wu J, Quan W, Yao Y, Wang W, Sun Z, Li D (2020) Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1. Aging (Albany NY) 12:8352–8371. https://doi.org/10.18632/aging.103145

    Article  CAS  Google Scholar 

  26. Pan W, Wu A, Yu H, Yu Q, Zheng B, Yang W, Tian D, Gao Y, Li P (2020) NEAT1 Negatively regulates cell proliferation and migration of neuroblastoma cells by miR-183-5p/FOXP1 Via the ERK/AKT pathway. Cell Transplant 29:963689720943608. https://doi.org/10.1177/0963689720943608

    Article  PubMed  Google Scholar 

  27. Guo R, Qin Y (2020) LEMD1-AS1 suppresses ovarian cancer progression through regulating miR-183-5p/TP53 axis. Onco Targets Ther 13:7387–7398. https://doi.org/10.2147/OTT.S250850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Zeng Q, Qiu J, Pang T, Ye F, Huang L, Zhang X (2020) MiR-183-5p promotes proliferation, metastasis and angiogenesis in breast cancer cells through negatively regulating four and a half LIM protein 1. J Breast Cancer 23:355–372. https://doi.org/10.4048/jbc.2020.23.e47

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duan X, Li W, Hu P, Jiang B, Yang J, Zhou L, Mao X, Tian B (2020) MicroRNA-183-5p contributes to malignant progression through targeting PDCD4 in human hepatocellular carcinoma. Biosci Rep. https://doi.org/10.1042/BSR20201761

  30. Tian J, Fu Y, Li Q, Xu Y, Xi X, Zheng Y, Yu L, Wang Z, Yu B, Tian J (2020) Differential expression and bioinformatics analysis of circRNA in PDGF-BB-induced vascular smooth muscle cells. Front Genet 11:530. https://doi.org/10.3389/fgene.2020.00530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dias-Santagata D, Lennerz JK, Sadow PM, Frazier RP, Govinda Raju S, Henry D, Chung T, Kherani J, Rothenberg SM, Wirth LJ (2020) Response to RET-specific therapy in RET fusion-positive anaplastic thyroid carcinoma. Thyroid 30:1384–1389. https://doi.org/10.1089/thy.2019.0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leone V, Langella C, Esposito F, De Martino M, Decaussin-Petrucci M, Chiappetta G, Bianco A, Fusco A (2015) miR-130b-3p upregulation contributes to the development of thyroid adenomas targeting CCDC6 gene. Eur Thyroid J 4:213–221. https://doi.org/10.1159/000441355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luise C, Merolla F, Leone V, Paladino S, Sarnataro D, Fusco A, Celetti A (2012) Identification of sumoylation sites in CCDC6, the first identified RET partner gene in papillary thyroid carcinoma, uncovers a mode of regulating CCDC6 function on CREB1 transcriptional activity. PLoS ONE 7:e49298. https://doi.org/10.1371/journal.pone.0049298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was study was supported by Chongqing Natural Science Foundation Postdoctoral Science Foundation Project (Grant No. cstc2019jcyj-bshX0123) and Special postdoctoral projects in Chongqing (No: XmT2018066).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contribution to conception and design, acquisition of the data, or analysis and interpretation of the data; take part in drafting the article or revising it critically for important intellectual content; gave final approval of the revision to be published; and agree to be accountable for all aspect of the work.

Corresponding author

Correspondence to Chong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The present study was approved by the ethical review committee of Fuling Central Hospital of Chongqing.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Gu, H., Liu, D. et al. The circ_FAM53B-miR-183-5p-CCDC6 axis modulates the malignant behaviors of papillary thyroid carcinoma cells. Mol Cell Biochem 477, 2627–2641 (2022). https://doi.org/10.1007/s11010-022-04465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04465-6

Keywords

Navigation