Skip to main content

Advertisement

Log in

Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Targeting oxidative stress and inflammation by novel dietary compounds of natural origin convincingly appears to be one of the most important therapeutic strategies to keep inflammatory bowel diseases (IBD) such as ulcerative colitis disease in remission. It is imperative to investigate naturally occuring plant-derived dietary phytochemicals that are receiving attention for their therapeutic benefits to overcome the debilitating conditions of IBD. In the present study, the effect of nerolidol (NRD), a monocyclic sesquiterpene found in German Chamomile tea, was investigated in acetic acid-induced colitis model in Wistar rats. NRD was orally administered at a dose of 50 mg/kg/day either for 3 days before or 30 min after induction of IBD for 7 days, after intrarectal administration of acetic acid. The body weight, macroscopic, and microscopic analyses of the colon in different experimental groups were observed on days 0, 2, 4, and 7. Acetic acid caused significant reduction in body weight and induced macroscopic and microscopic ulcer along with a significant decline of antioxidants, concomitant to increased malondialdehyde (MDA), a marker of lipid peroxidation, and myeloperoxidase (MPO) activity, a marker of neutrophil activation. Treatment with NRD significantly improved IBD-induced reduction in body weight, improved histology, inhibited MDA formation, and restored antioxidants along with reduced MPO activity. Acetic acid also induced the release of pro-inflammatory cytokines and increased calprotectin, released by neutrophils under inflammatory conditions. NRD treatment significantly reduced calprotectin and pro-inflammatory cytokines. NRD treatment showed potential to improve disease activity and inhibit oxidative stress, lipid peroxidation, and inflammation along with histological preservation of the colon tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The manuscript data are well archived with the principal investigator, Prof. Salim MA Bastaki. The manuscript data will be available to the editors upon reasonable request from Prof. Salim Bastaki.

References

  1. Malik TA (2015) Inflammatory bowel disease: historical perspective, epidemiology, and risk factors. Surg Clin N Am 95(1105–1122):v

    Google Scholar 

  2. Stepaniuk P, Bernstein CN, Targownik LE, Singh H (2015) Characterization of inflammatory bowel disease in elderly patients: a review of epidemiology, current practices and outcomes of current management strategies. Can J Gastroenterol Hepatol 29:327–333

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tenailleau QM, Lanier C, Gower-Rousseau C, Cuny D, Deram A, Occelli F (2020) Crohn’s disease and environmental contamination: Current challenges and perspectives in exposure evaluation. Environ Pollut 263:114599

    Article  CAS  PubMed  Google Scholar 

  4. Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640

    Article  CAS  PubMed  Google Scholar 

  5. Marafini I, Sedda S, Dinallo V, Monteleone G (2019) Inflammatory cytokines: from discoveries to therapies in IBD. Expert Opin Biol Ther 19(11):1207–1217

    Article  CAS  PubMed  Google Scholar 

  6. Leppkes M, Neurath MF (2020) Cytokines in inflammatory bowel diseases—update 2020. Pharmacol Res 158:104835

    Article  CAS  PubMed  Google Scholar 

  7. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moura FA, Goulart MOF, Campos SBG, da Paz Martins AS (2020) The close interplay of nitro-oxidative stress, advanced glycation end products and inflammation in inflammatory bowel diseases. Curr Med Chem 27:2059–2076

    Article  CAS  PubMed  Google Scholar 

  9. Hazel K, O’Connor A (2020) Emerging treatments for inflammatory bowel disease. Ther Adv Chronic Dis. https://doi.org/10.1177/2040622319899297

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chapman TP, Gomes CF, Louis E, Colombel JF (2020) Review Article: withdrawal of 5-aminosalicylates in inflammatory bowel disease. Aliment Pharmacol Ther 52(1):73–84

    Article  PubMed  Google Scholar 

  11. Vachon A, Scott FI (2020) The treatment approach to inflammatory bowel disease in 2020. Curr Opin Gastroenterol 36:247–256

    Article  CAS  PubMed  Google Scholar 

  12. Algieri F, Rodriguez-Nogales A, Rodriguez-Cabezas ME, Risco S, Ocete MA, Galvez J (2015) Botanical drugs as an emerging strategy in inflammatory bowel disease: a review. Mediators Inflamm 2015:179616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Triantafyllidi A, Xanthos T, Papalois A, Triantafillidis JK (2015) Herbal and plant therapy in patients with inflammatory bowel disease. Ann Gastroenterol 28:210–220

    PubMed  PubMed Central  Google Scholar 

  14. Ganji-Arjenaki M, Rafieian-Kopaei M (2019) Phytotherapies in inflammatory bowel disease. J Res Med Sci 24:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Venkataraman B, Ojha S, Belur PD, Bhongade B, Raj V, Collin PD et al (2020) Phytochemical drug candidates for the modulation of peroxisome proliferator-activated receptor γ in inflammatory bowel diseases. Phytother Res 34(7):1530–1549

    Article  CAS  PubMed  Google Scholar 

  16. Yeshi K, Ruscher R, Hunter L, Daly NL, Loukas A, Wangchuk P (2020) Revisiting inflammatory bowel disease: pathology, treatments, challenges and emerging therapeutics including drug leads from natural products. J Clin Med 9(5):1273

    Article  CAS  PubMed Central  Google Scholar 

  17. Ambrose T, Simmons A (2019) Cannabis, cannabinoids, and the endocannabinoid system—is there therapeutic potential for inflammatory bowel disease? J Crohns Colitis 13(4):525–535

    Article  PubMed  Google Scholar 

  18. Chan WK, Tan LT, Chan KG, Lee LH, Goh BH (2016) Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 21(5):529

    Article  PubMed Central  CAS  Google Scholar 

  19. Sun S, Du GJ, Qi LW, Williams S, Wang CZ, Yuan CS (2010) Hydrophobic constituents and their potential anticancer activities from Devil’s Club (Oplopanax horridus Miq.). J Ethnopharmacol 132:280–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dall’Acqua S, Peron G, Ferrari S, Gandin V, Bramucci M, Quassinti L et al (2017) Phytochemical investigations and antiproliferative secondary metabolites from Thymus alternans growing in Slovakia. Pharm Biol 55:1162–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou Y, Zeng L, Liu X, Gui J, Mei X, Fu X et al (2017) Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem 231:78–86

    Article  CAS  PubMed  Google Scholar 

  22. Alves RF, Nascimento AMD, Nogueira JMF (2005) Characterization of the aroma profile of Madeira wine by sorptive extraction techniques. Anal Chim Acta 546:11–21

    Article  CAS  PubMed  Google Scholar 

  23. Javed H, Azimullah S, Abul Khair SB, Ojha S, Haque ME (2016) Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci 17:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Baldissera MD, Souza CF, Grando TH, Dolci GS, Cossetin LF, Moreira KL et al (2017) Nerolidol-loaded nanospheres prevent hepatic oxidative stress of mice infected by Trypanosoma evansi. Parasitology 144:148–157

    Article  CAS  PubMed  Google Scholar 

  25. Iqubal A, Sumit S, Ansari MA, Najmi AK, Syed MA, Ali J et al (2019) Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss albino mice. Eur J Pharmacol 863:172666

    Article  CAS  PubMed  Google Scholar 

  26. Thapa D, Richardson AJ, Zweifel B, Wallace RJ, Gratz SW (2019) Genoprotective effects of essential oil compounds against oxidative and methylated DNA damage in human colon cancer cells. J Food Sci 84:1979–1985

    Article  CAS  PubMed  Google Scholar 

  27. Fonsêca DV, Salgado PR, de Carvalho FL, Salvadori MG, Penha AR, Leite FC et al (2016) Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol 30:14–22

    Article  PubMed  CAS  Google Scholar 

  28. Ferreira MOG, Leite LLR, de Lima IS, Barreto HM, Nunes LCC, Ribeiro AB et al (2016) Chitosan hydrogel in combination with nerolidol for healing wounds. Carbohydr Polym 152:409–418

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Sun D, Bao Y, Shi Y, Cui Y, Guo M (2017) Nerolidol protects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling. Phytother Res 31:459–465

    Article  CAS  PubMed  Google Scholar 

  30. Ni YL, Shen HT, Su CH, Chen WY, Huang-Liu R, Chen CJ et al (2019) Nerolidol suppresses the inflammatory response during lipopolysaccharide-induced acute lung injury via the modulation of antioxidant enzymes and the AMPK/Nrf-2/HO-1 pathway. Oxid Med Cell Longev 2019:9605980

    PubMed  PubMed Central  Google Scholar 

  31. Iqubal A, Syed MA, Najmi AK, Ali J, Haque SE (2020) Ameliorative effect of nerolidol on cyclophosphamide-induced gonadal toxicity in Swiss Albino mice: biochemical-, histological- and immunohistochemical-based evidences. Andrologia 52:e13535

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Wang Q, Han L, Yang X, Zhao W, Lyu L et al (2020) Nerolidol inhibits the LOX-1/IL-1β signaling to protect against the Aspergillus fumigatus keratitis inflammation damage to the cornea. Int Immunopharmacol 80:106118

    Article  CAS  PubMed  Google Scholar 

  33. Klopell FC, Lemos M, Sousa JP, Comunello E, Maistro EL, Bastos JK et al (2007) Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z Naturforsch C J Biosci 62:537–542

    Article  CAS  PubMed  Google Scholar 

  34. Melekoglu R, Ciftci O, Eraslan S, Cetin A, Basak N (2018) The beneficial effects of nerolidol and hesperidin on surgically induced endometriosis in a rat model. Gynecol Endocrinol 34:975–980

    Article  CAS  PubMed  Google Scholar 

  35. Kaur D, Pahwa P, Goel RK (2016) Protective effect of nerolidol against pentylenetetrazol-induced kindling, oxidative stress and associated behavioral comorbidities in mice. Neurochem Res 41:2859–2867

    Article  CAS  PubMed  Google Scholar 

  36. Wallace JL, Keenan CM (1990) An orally active inhibitor of leukotriene synthesis accelerates healing in a rat model of colitis. Am J Physiol 258:G527–G534

    CAS  PubMed  Google Scholar 

  37. Lestringant GG, Masouyé I, Frossard PM, Adeghate E, Galadari IH (1997) Co-existence of leukoderma with features of Dowling-Degos disease: reticulate acropigmentation of Kitamura spectrum in five unrelated patients. Dermatology 195:337–343

    Article  CAS  PubMed  Google Scholar 

  38. Lestringant GG, Frossard PM, Adeghate E, Qayed KI (1997) Mal de Meleda: a report of four cases from the United Arab Emirates. Pediatr Dermatol 14:186–191

    Article  CAS  PubMed  Google Scholar 

  39. Neurath MF, Fuss I, Kelsall BL, Stüber E, Strober W (1995) Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 182:1281–1290

    Article  CAS  PubMed  Google Scholar 

  40. Medicherla K, Sahu BD, Kuncha M, Kumar JM, Sudhakar G, Sistla R (2015) Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling. Food Funct 6:2984–2995

    Article  CAS  PubMed  Google Scholar 

  41. de Santana Souza MT, Teixeira DF, de Oliveira JP, Oliveira AS, Quintans-Júnior LJ, Correa CB et al (2017) Protective effect of carvacrol on acetic acid-induced colitis. Biomed Pharmacother 96:313–319

    Article  PubMed  CAS  Google Scholar 

  42. Bastaki SM, Adeghate E, Amir N, Ojha S, Oz M (2018) Menthol inhibits oxidative stress and inflammation in acetic acid-induced colitis in rat colonic mucosa. Am J Transl Res 10:4210–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalra J, Lingaraju MC, Mathesh K, Kumar D, Parida S, Singh TU et al (2018) Betulinic acid alleviates dextran sulfate sodium-induced colitis and visceral pain in mice. Naunyn Schmiedebergs Arch Pharmacol 391:285–297

    Article  CAS  PubMed  Google Scholar 

  44. Jia Z, Xu C, Shen J, Xia T, Yang J, He Y (2015) The natural compound celastrol inhibits necroptosis and alleviates ulcerative colitis in mice. Int Immunopharmacol 29:552–559

    Article  CAS  PubMed  Google Scholar 

  45. Santos FA, Silva RM, Campos AR, De Araújo RP, Lima Júnior RC, Rao VS (2004) 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol 42:579–584

    Article  CAS  PubMed  Google Scholar 

  46. MacPherson BR, Pfeiffer CJ (1978) Experimental production of diffuse colitis in rats. Digestion 17:135–150

    Article  CAS  PubMed  Google Scholar 

  47. Warren BF (1994) Another model of acetic acid-induced colitis in the rat. Aliment Pharmacol Ther 8:659–660

    Article  CAS  PubMed  Google Scholar 

  48. Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140:1756–1767

    Article  CAS  PubMed  Google Scholar 

  49. Santana MT, Cercato LM, Oliveira JP, Camargo EA (2017) Medicinal plants in the treatment of colitis: evidence from preclinical studies. Planta Med 83:588–614

    Article  CAS  PubMed  Google Scholar 

  50. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME et al (2016) Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016:5276130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Orlando RC (2010) The integrity of the esophageal mucosa Balance between offensive and defensive mechanisms. Best Pract Res Clin Gastroenterol 24:873–882

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sørbye H, Svanes K (1994) The role of blood flow in gastric mucosal defence, damage and healing. Dig Dis 12:305–317

    Article  PubMed  Google Scholar 

  53. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  CAS  PubMed  Google Scholar 

  54. Chaudhary G, Mahajan UB, Goyal SN, Ojha S, Patil CR, Subramanya SB (2017) Protective effect of Lagerstroemia speciosa against dextran sulfate sodium-induced ulcerative colitis in C57BL/6 mice. Am J Transl Res 9:1792–1800

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Balmus IM, Ciobica A, Trifan A, Stanciu C (2016) The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: clinical aspects and animal models. Saudi J Gastroenterol 22:3–17

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alzoghaibi MA, Al Mofleh IA, Al-Jebreen AM (2007) Lipid peroxides in patients with inflammatory bowel disease. Saudi J Gastroenterol 13:187–190

    Article  PubMed  Google Scholar 

  57. Bastaki SMA, Al Ahmed MM, Al Zaabi A, Amir N, Adeghate E (2016) Effect of turmeric on colon histology, body weight, ulcer, IL-23, MPO and glutathione in acetic-acid-induced inflammatory bowel disease in rats. BMC Complement Altern Med 16:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sartor RB (1994) Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology 106:533–539

    Article  CAS  PubMed  Google Scholar 

  60. Fizur NMM, Azimullah A, Laham F, Saeed T, Goyal SN, Adeghate E et al (2020) α-Bisabolol protects against β-adrenergic agonist-induced myocardial infarction in rats by attenuating inflammation, lysosomal dysfunction, NLRP3 inflammasome activation and modulating autophagic flux. Food Funct. https://doi.org/10.1039/C9FO00530G

    Article  Google Scholar 

  61. Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87:1344–1350

    Article  CAS  PubMed  Google Scholar 

  62. Mullane KM, Kraemer R, Smith B (1985) Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods 14:157–167

    Article  CAS  PubMed  Google Scholar 

  63. Wéra O, Lancellotti P, Oury C (2016) The dual role of neutrophils in inflammatory bowel diseases. J Clin Med 5(12):118

    Article  PubMed Central  CAS  Google Scholar 

  64. Chatzikonstantinou M, Konstantopoulos P, Stergiopoulos S, Kontzoglou K, Verikokos C, Perrea D et al (2016) Calprotectin as a diagnostic tool for inflammatory bowel diseases. Biomed Rep 5:403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SMAB and SO have conceptualized the study. SMAB designed the experiments, and interpreted the data. NA has performed test treatments, animal care, experiments, and biochemical estimations. NA carried out the statistical analysis of all the data collected and archived all the data. EA performed the histopathological studies and interpreted the observations. SMBA and SO wrote the first draft of manuscript and SMBA significantly edited the manuscript. SO and SMBA have revised and submitted the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Salim M. A. Bastaki.

Ethics declarations

Competing interest

The authors are grateful for the financial support from the United Arab Emirates University and for providing facilities to conduct the experiments. The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastaki, S.M.A., Amir, N., Adeghate, E. et al. Nerolidol, a sesquiterpene, attenuates oxidative stress and inflammation in acetic acid-induced colitis in rats. Mol Cell Biochem 476, 3497–3512 (2021). https://doi.org/10.1007/s11010-021-04094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04094-5

Keywords

Navigation