Skip to main content

Advertisement

Log in

Preventive Anti-inflammatory Effects of Apocynin on Acetic Acid–Induced Colitis in Rats

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Ulcerative colitis is an inflammatory bowel disease with a complex aetiology characterised by abnormal immune responses and oxidative stress–induced tissue injury. Inflammatory cells play an important role in the progression of this pathology through the overproduction of reactive oxygen species (ROS) from various sources including the NADPH oxidases (NOXs). The aim of this study was to investigate the preventive effect of apocynin, a natural antioxidant molecule and a selective inhibitor of NOXs, on acetic acid (AA)-induced ulcerative colitis in rats. Our results first confirmed that apocynin has a high free radical scavenging capacity as well as a potent iron chelating ability. Oral pretreatment of rats with apocynin (200 mg/kg and 400 mg/kg) for 7 days prior to AA-induced colitis suppressed the increase in pro-oxidant markers in colonic homogenates and preserved colonic cytoarchitecture from acetic acid–induced damage. Oral administration of apocynin (200 mg/kg and 400 mg/kg) also reduced several systemic inflammatory markers such as alkaline phosphatase, iron, pro-inflammatory cytokines, C-reactive protein and myeloperoxidase. This study shows that apocynin protects rats from acetic acid–induced colonic inflammation and suggests that apocynin may have a promising beneficial effect in the prevention of ulcerative colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

DATA AVAILABILITY

All data generated during this study are included in this published version; for further details on data availability, please contact the corresponding author.

Abbreviations

AA:

Acetic acid

ABTS:

2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid

ALP:

Alkaline phosphatase

AOPPs:

Advanced oxidation protein products

AP:

Apocynin

BHT:

Butylated hydroxytoluene

CRP:

C-reactive protein

DAI:

Disease activity index

DMSO:

Dimethylsulfoxide

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

DTNB:

5,5′-Dithiobis-(2-nitrobenzoic acid)

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

EM:

External mucosa

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

HTAB:

Hexadecyltrimethylammonium bromide

IBD:

Inflammatory bowel disease

IC50 :

Half-maximal inhibitory concentration

IL-1β:

Interleukin-1β

iNOS:

Inducible nitric oxide synthase

L:

Length

LM:

Lamina

MDA:

Malondialdehyde

MM:

Muscularis mucosa

MPO:

Myeloperoxidase

NADPH:

Nicotinamide adenine dinucleotide phosphate oxidase

NOX:

NADPH oxidase

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

SM:

Submucosa

SOD:

Superoxide dismutase

SSZ:

Sulfasalazine

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

TNF-α:

Tumour necrosis factor-α

UC:

Ulcerative colitis

W:

Weight

REFERENCES

  1. Hamanaka, Robert B., and Navdeep S. Chandel. 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences 35 (9): 505–513. https://doi.org/10.1016/j.tibs.2010.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ohashi, Masuo, Marschall S. Runge, Frank M. Faraci, and Donald D. Heistad. 2006. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology 26 (10): 2331–2336. https://doi.org/10.1161/01.ATV.0000238347.77590.c9.

    Article  CAS  PubMed  Google Scholar 

  3. Franco, Rodrigo, Onard Schoneveld, Alexandros G. Georgakilas, and Mihalis I. Panayiotidis. 2008. Oxidative stress, DNA methylation and carcinogenesis. Cancer Letters 266 (1): 6–11. https://doi.org/10.1016/j.canlet.2008.02.026.

    Article  CAS  PubMed  Google Scholar 

  4. Kouki, Ahmed, Wafa Ferjani, Néziha. Ghanem-Boughanmi, Mossadok Ben-Attia, Pham My-Chan. Dang, Abdelaziz Souli, and Jamel El-Benna. 2023. The NADPH oxidase inhibitors apocynin and diphenyleneiodonium protect rats from LPS-induced pulmonary inflammation. Antioxidants (Basel, Switzerland) 12 (3): 770. https://doi.org/10.3390/antiox12030770.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, Hong, and Y. Robert Li. 2012. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: Updated experimental and clinical evidence. Experimental biology and Medicine (Maywood, N.J.) 237(5): 474–480. https://doi.org/10.1258/ebm.2011.011358.

  6. Okur, Hamit, Mustafa Küçükaydin, Kader Köse, Olgun Kontaş, Pakize Doǧan, and Ahmet Kazez. 1995. Hypoxia-induced necrotizing enterocolitis in the immature rat: The role of lipid peroxidation and management by vitamin E. Journal of Pediatric Surgery 30 (10): 1416–1419. https://doi.org/10.1016/0022-3468(95)90395-x.

    Article  CAS  PubMed  Google Scholar 

  7. Bitton, Alain, Mark A. Peppercorn, Donald A. Antonioli, John L. Niles, Samir Shah, Athos Bousvaros, Bernard Ransil, Bernard Wild, Gary Cohen, Albert Deb Edwardes, Michael D. Stevens, and C. Anthony. 2001. Clinical, biological, and histologic parameters as predictors of relapse in ulcerative colitis. Gastroenterology 120 (1): 13–20. https://doi.org/10.1053/gast.2001.20912.

    Article  CAS  PubMed  Google Scholar 

  8. Oshitani, Nobuhide, Yoshinori Sawa, Junichi Hara, Kenji Adachi, Shiro Nakamura, Takayuki Matsumoto, Tetsuo Arakawa, and Tetsuo Kuroki. 1997. Functional and phenotypical activation of leucocytes in inflamed human colonic mucosa. Journal of Gastroenterology and Hepatology 12 (12): 809–814. https://doi.org/10.1111/j.1440-1746.1997.tb00376.x.

    Article  CAS  PubMed  Google Scholar 

  9. Guan, Qingdong, and Jiguo Zhang. 2017. Recent advances: The imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators of Inflammation 2017: 4810258. https://doi.org/10.1155/2017/4810258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fridovich, Irwin. 2004. Mitochondria: Are they the seat of senescence? Aging Cell 3 (1): 13–16. https://doi.org/10.1046/j.1474-9728.2003.00075.x.

    Article  CAS  PubMed  Google Scholar 

  11. Spiekermann, Stephan, Ulf Landmesser, Sergey Dikalov, Martin Bredt, Graciela Gamez, Helma Tatge, Nina Reepschläger, Burkhard Hornig, Helmut Drexler, and David G. Harrison. 2003. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: Relation to endothelium-dependent vasodilation. Circulation 107 (10): 1383–1389. https://doi.org/10.1161/01.cir.0000056762.69302.46.

    Article  CAS  PubMed  Google Scholar 

  12. Bedard, Karen, and Karl-Heinz. Krause. 2007. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews 87 (1): 245–313. https://doi.org/10.1152/physrev.00044.2005.

    Article  CAS  PubMed  Google Scholar 

  13. Lambeth, J. David. 2007. Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free radical Biology & Medicine 43 (3): 332–347. https://doi.org/10.1016/j.freeradbiomed.2007.03.027.

    Article  CAS  Google Scholar 

  14. Bhattacharyya, Asima, Ranajoy Chattopadhyay, Sankar Mitra, and Sheila E. Crowe. 2014. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews 94 (2): 329–354. https://doi.org/10.1152/physrev.00040.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baumgart, Daniel C., and William J. Sandborn. 2007. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet (London, England) 369 (9573): 1641–1657. https://doi.org/10.1016/S0140-6736(07)60751-X.

    Article  CAS  PubMed  Google Scholar 

  16. Hamouda, Hala E., Soha S. Zakaria, Saber A. Ismail, Mahmoud A. Khedr, and Wael W. Mayah. 2011. p53 antibodies, metallothioneins, and oxidative stress markers in chronic ulcerative colitis with dysplasia. World Journal of Gastroenterology 17 (19): 2417–2423. https://doi.org/10.3748/wjg.v17.i19.2417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, Chia-Chao, Jin-Shuen Chen, Wen-Mein Wu, Tung-Nan Liao, Pauling Chu, Shih-Hua Lin, Chien-Huei Chuang, and Yuh-Feng Lin. 2005. Myeloperoxidase serves as a marker of oxidative stress during single haemodialysis session using two different biocompatible dialysis membranes. Nephrology, Dialysis, Transplantation 20 (6): 1134–1139. https://doi.org/10.1093/ndt/gfh764.

  18. Beltran, Belen, Pilar Nos, Francisco Dasí, Marisa Iborra, Guillermo Bastida, Marcial Martínez, José-Enrique. O’Connor, Guillermo Sáez, Inés. Moret, and Julio Ponce. 2010. Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naïve and treated Crohn’s disease. Inflammatory Bowel Diseases 16 (1): 76–86. https://doi.org/10.1002/ibd.21027.

    Article  PubMed  Google Scholar 

  19. Neurath, Markus F., Ivan Fuss, Guido Schürmann, Sven Pettersson, H.E.L.M.U.T. Karl Arnold, Warren Strober Müller-Lobeck, Christian Herfarth, and Karl-Hermann Meyer Zum. Büschenfelde. 1998. Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease. Annals of the New York Academy of Sciences 859: 149–159. https://doi.org/10.1111/j.1749-6632.1998.tb11119.x.

    Article  CAS  PubMed  Google Scholar 

  20. Altenhöfer, Sebastian, Kim A. Radermacher, Pamela WM. Kleikers, Kirstin Wingler, and Harald HHW. Schmidt. 2015. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxidants & Redox Signaling 23 (5): 406–427. https://doi.org/10.1089/ars.2013.5814.

    Article  CAS  Google Scholar 

  21. Probert, Chris. 2013. Steroids and 5-aminosalicylic acids in moderate ulcerative colitis: Addressing the dilemma. Therapeutic Advances in Gastroenterology 6 (1): 33–38. https://doi.org/10.1177/1756283X12461395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roselli, Marianna, and Alberto Finamore. 2020. Use of synbiotics for ulcerative colitis treatment. Current Clinical Pharmacology 15 (3): 174–182. https://doi.org/10.2174/1574884715666191226120322.

    Article  CAS  PubMed  Google Scholar 

  23. Feagan, Brian G., and John K. MacDonald. 2012. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis. The Cochrane Database of Systematic Reviews 10: CD000543. https://doi.org/10.1002/14651858.CD000543.pub3.

  24. Ford, A.C., C.N. Bernstein, K.J. Khan, M.T. Abreu, J.K. Marshall, N.J. Talley, and P. Moayyedi. 2011. Glucocorticosteroid therapy in inflammatory bowel disease: Systematic review and meta-analysis. The American Journal of Gastroenterology 106 (4): 590–600. https://doi.org/10.1038/ajg.2011.70.

    Article  CAS  PubMed  Google Scholar 

  25. Singh, Amandeep, Kirandeep Kaur, Veerpal Kaur, Gurmeet Singh, Uttam Kumar Mandal, Neeraj Mishra, and Raj Kumar Narnag. 2019. Importance of nanocarriers and probiotics in the treatment of ulcerative colitis. Journal of Drug Delivery and Therapeutics 9: 216–228.

    Article  CAS  Google Scholar 

  26. Newman, David J., and Gordon M. Cragg. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products 83 (3): 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, David K., Kurt J. Schillinger, David M. Kwait, Chambers V. Hughes, Erin J. McNamara, Fauod Ishmael, Robert W. O'Donnell, Ming-Mei Chang, Michael G. Hogg, Jonathan S. Dordick, Lakshmi Santhanam, Linda M. Ziegler and James A. Holland. 2002. Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols. Endothelium: Journal of Endothelial Cell Research 9 (3): 191–203. https://doi.org/10.1080/10623320213638.

  28. Vejražka, Martin, Radan Míček, and Stanislav Štípek. 2005. Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochimica et biophysica acta 1722 (2): 143–147. https://doi.org/10.1016/j.bbagen.2004.12.008.

    Article  CAS  PubMed  Google Scholar 

  29. Hur, Jinyoung, Pyeongjae Lee, Mi Jung Kim, Younghoon Kim, and Young-Wuk Cho. 2010. Ischemia-activated microglia induces neuronal injury via activation of gp91phox NADPH oxidase. Biochemical and Biophysical Research Communications 391 (3): 1526–1530. https://doi.org/10.1016/j.bbrc.2009.12.114.

  30. Muijsers, R.B.R., E. van Den Worm, G. Folkerts, C.J. Beukelman, A.S. Koster, D.S. Postma, and F.P. Nijkamp. 2000. Apocynin inhibits peroxynitrite formation by murine macrophages. British Journal of Pharmacology 130 (4): 932–936. https://doi.org/10.1038/sj.bjp.0703401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hougee, Sander, Anita Hartog, Annemarie Sanders, Yvo MF. Graus, Maarten A. Hoijer, Johan Garssen, Wim B. van den Berg, Henk M. van Beuningen, and H. Friso Smit. 2006. Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. European Journal of Pharmacology 531 (1–3): 264–269. https://doi.org/10.1016/j.ejphar.2005.11.061.

    Article  CAS  PubMed  Google Scholar 

  32. Marín, Marta, Rosa María Giner, José-Luis. Ríos, and María del Carmen Recio. 2013. Protective effect of apocynin in a mouse model of chemically-induced colitis. Planta Medica 79 (15): 1392–1400. https://doi.org/10.1055/s-0033-1350710.

    Article  CAS  PubMed  Google Scholar 

  33. Stefanska, J., and R. Pawliczak. 2008. Apocynin: Molecular aptitudes. Mediators of Inflammation 2008: 106507. https://doi.org/10.1155/2008/106507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simons, Jos M., Bert A't Hart, Theo RAM Ip Vai Ching, Hans Van Dijk, and Rudi P. Labadie. 1990. Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radical Biology & Medicine 8 (3): 251–258. https://doi.org/10.1016/0891-5849(90)90070-y.

  35. Müller, Andreas A., Susanne A. Reiter, Karin G. Heider, and Hildebert Wagner. 1999. Plant-derived acetophenones with antiasthmatic and anti-inflammatory properties: Inhibitory effects on chemotaxis, right angle light scatter and actin polymerization of polymorphonuclear granulocytes. Planta Medica 65 (7): 590–594. https://doi.org/10.1055/s-1999-14029.

    Article  PubMed  Google Scholar 

  36. Pintard, Coralie, Marwa Ben Khemis, Dan Liu, Pham My-Chan. Dang, Margarita Hurtado-Nedelec, and Jamel El-Benna. 2020. Apocynin prevents GM-CSF-induced-ERK1/2 activation and -neutrophil survival independently of its inhibitory effect on the phagocyte NADPH oxidase NOX2. Biochemical Pharmacology 177: 113950. https://doi.org/10.1016/j.bcp.2020.113950.

    Article  CAS  PubMed  Google Scholar 

  37. Re, Roberta, Nicoletta Pellegrini, Anna Proteggente, Ananth Pannala, Min Yang, and Catherine Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine 26 (9–10): 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.

    Article  CAS  Google Scholar 

  38. Grzegorczyk, I., A. Matkowski, and H.J.F.C. Wysokińska. 2007. Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chemistry 104: 536–541. https://doi.org/10.1016/j.foodchem.2006.12.003.

    Article  CAS  Google Scholar 

  39. Chew, Yik-Ling, Joo-Kheng Goh, and Yau-Yan Lim. 2009. Assessment of in-vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chemistry 116: 13–18. https://doi.org/10.1016/j.foodchem.2009.01.091.

  40. Ghasemi-Pirbaluti, M., E. Motaghi, A. Najafi, and M.J. Hosseini. 2017. The effect of theophylline on acetic acid induced ulcerative colitis in rats. Biomedicine & Pharmacotherapy 90: 153–159. https://doi.org/10.1016/j.biopha.2017.03.038.

    Article  CAS  Google Scholar 

  41. Han, F.H., H. Zhang, X. Xia, H. Xiong, D. Song, X. Zong, and Y. Wang. 2015. Porcine β-defensin 2 attenuates inflammation and mucosal lesions in dextran sodium sulfate-induced colitis. Journal of Immunology (Baltimore, Md. 1950) 194 (4): 1882–1893. https://doi.org/10.4049/jimmunol.1402300.

  42. Classics Lowry, O., N. Rosebrough, A. Farr, and R. Randall. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193 (1): 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6.

    Article  Google Scholar 

  43. Witko-Sarsat, Véronique., Miriam Friedlander, Chantal Capeillère-Blandin, Thao Nguyen-Khoa, Anh Thu Nguyen, Johanna Zingraff, Paul Jungers, and Béatrice. Descamps-Latscha. 1996. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International 49 (5): 1304–1313. https://doi.org/10.1038/ki.1996.186.

    Article  CAS  PubMed  Google Scholar 

  44. Yagi, Kunio. 1976. A simple fluorometric assay for lipoperoxide in blood plasma. Biochemical Medicine 15 (2): 212–216. https://doi.org/10.1016/0006-2944(76)90049-1.

    Article  CAS  PubMed  Google Scholar 

  45. Aebi, Hugo. 1984. [13] Catalase in vitro. Meth Enzymol 105: 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3.

    Article  CAS  Google Scholar 

  46. Misra, Hara P., and Irwin Fridovich. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry 247 (10): 3170–3175. https://doi.org/10.1016/s0021-9258(19)45228-9.

    Article  CAS  PubMed  Google Scholar 

  47. Bradley, Peter P., Dennis A. Priebat, Robert D. Christensen, and Gerald Rothstein. 1982. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology 78 (3): 206–209. https://doi.org/10.1111/1523-1747.ep12506462.

    Article  CAS  PubMed  Google Scholar 

  48. Ellman, George L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82 (1): 70–77. https://doi.org/10.1016/0003-9861(59)90090-6.

    Article  CAS  PubMed  Google Scholar 

  49. Torres, Joana, Vincent Billioud, David B. Sachar, Laurent Peyrin-Biroulet, and Jean-Frédéric. Colombel. 2012. Ulcerative colitis as a progressive disease: The forgotten evidence. Inflammatory Bowel Diseases 18 (7): 1356–1363. https://doi.org/10.1002/ibd.22839.

    Article  PubMed  Google Scholar 

  50. Ali, Azza Abdelfattah, Ekram Nemr Abd Al. Haleem, Sahar Abdel-Hafeez. Khaleel, and Amany Said Sallam. 2017. Protective effect of cardamonin against acetic acid-induced ulcerative colitis in rats. Pharmacological Reports PR 69 (2): 268–275. https://doi.org/10.1016/j.pharep.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  51. Randhawa, Puneet Kaur, Kavinder Singh, Nirmal Singh, and Amteshwar Singh Jaggi. 2014. A review on chemical-induced inflammatory bowel disease models in rodents. The Korean Journal of Physiology & Pharmacology 18 (4): 279–288. https://doi.org/10.4196/kjpp.2014.18.4.279.

    Article  CAS  Google Scholar 

  52. Xiong, Shigang, Hongyun She, Chin K. Sung, and Hidekazu Tsukamoto. 2003. Iron-dependent activation of NF-kappaB in Kupffer cells: A priming mechanism for alcoholic liver disease. Alcohol (Fayetteville, N.Y.) 30 (2): 107–113. https://doi.org/10.1016/s07418329(03)00100-9.

  53. Nemeth, Zoltan H., Dorian A. Bogdanovski, Patricia Barratt-Stopper, Samantha R. Paglinco, Luca Antonioli, and Rolando H. Rolandelli. 2017. Crohn’s disease and ulcerative colitis show unique cytokine profiles. Cureus 9 (4): e1177. https://doi.org/10.7759/cureus.1177.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Volk, Neil, and Corey A. Siegel. 2019. Defining failure of medical therapy for inflammatory bowel disease. Inflammatory Bowel Diseases 25 (1): 74–77. https://doi.org/10.1093/ibd/izy238.

    Article  PubMed  Google Scholar 

  55. Kornbluth, Asher, David B. Sachar, and Practice Parameters Committee of the American College of Gastroenterology. 2010. Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee. The American Journal of Gastroenterology 105 (3): 501–524. https://doi.org/10.1038/ajg.2009.727.

    Article  Google Scholar 

  56. Mileo, Anna Maria, and Stefania Miccadei. 2016. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies. Oxidative Medicine and Cellular Longevity 2016: 6475624. https://doi.org/10.1155/2016/6475624.

    Article  CAS  PubMed  Google Scholar 

  57. Radecki, A. 1981. Analysis of an industrial smoke preparation. Part VI. Acute toxicity, and bactericidal and antioxidative activities of some phenolic fraction components of industrial smoke preparation. Bromatologia i Chemia Toksykologiczna 14 (3): 301–306.

  58. Nam, Yoon Jeong, Arum Kim, Dong Suep Sohn, and Chung Soo Lee. 2016. Apocynin inhibits Toll-like receptor-4-mediated activation of NF-κB by suppressing the Akt and mTOR pathways. Naunyn-Schmiedeberg’s Archives of Pharmacology 389 (12): 1267–1277. https://doi.org/10.1007/s00210-016-1288-5.

    Article  CAS  PubMed  Google Scholar 

  59. Mouzaoui, Souad, Bahia Djerdjouri, Nesrine Makhezer, Yolande Kroviarski, Jamel El-Benna, and Pham My-Chan. Dang. 2014. Tumor necrosis factor-α-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: Preventive effect of apocynin. Mediators of Inflammation 2014: 312484. https://doi.org/10.1155/2014/312484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heumüller, Sabine, Sven Wind, Eduardo Barbosa-Sicard, Harald HHW Schmidt, Rudi Busse, Katrin Schröder, and Ralf P. Brandes. 2008. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension (Dallas, Tex. 1979) 51 (2): 211–217. https://doi.org/10.1161/HYPERTENSIONAHA.107.100214.

  61. Lehmann, C., S. Islam, S. Jarosch, J. Zhou, D. Hoskin, A. Greenshields, N. Al-Banna, N. Sharawy, A. Sczcesniak, M. Kelly, K. Wafa, W. Cheliak, and B. Holbein. 2015. The utility of iron chelators in the management of inflammatory disorders. Mediators of Inflammation 2015: 516740. https://doi.org/10.1155/2015/516740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hwang, Young-Jae., Seung-Joo. Nam, Wanjoo Chun, Song In Kim, Sung Chul Park, Chang Don Kang, and Sung Joon Lee. 2019. Anti-inflammatory effects of apocynin on dextran sulfate sodium-induced mouse colitis model. PLoS ONE 14 (5): e0217642. https://doi.org/10.1371/journal.pone.0217642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Komiya, Masami, Gen Fujii, Shingo Miyamoto, Mami Takahashi, Rikako Ishigamori, Wakana Onuma, Kousuke Ishino, Yukari Totsuka, Kyoko Fujimoto, and Michihiro Mutoh. 2015. Suppressive effects of the NADPH oxidase inhibitor apocynin on intestinal tumorigenesis in obese KK-A(y) and Apc mutant Min mice. Cancer Science 106 (11): 1499–1505. https://doi.org/10.1111/cas.12801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paracatu, Luana C., Maria L. Zeraik, Luiza de Carvalho Bertozo, Aloisio de Andrade Bartolomeu, Luiz C. da Silva Filho, Luiz M. da Fonseca, and Valdecir F. Ximenes. 2016. Synthesis, antioxidant and anti-inflammatory properties of an apocynin- derived dihydrocoumarin. Medicinal Chemistry (Shariqah (United Arab Emirates)) 13 (1): 93–100. https://doi.org/10.2174/1573406412666160610093216.

  65. Impellizzeri, Daniela, Emanuela Mazzon, Emanuela Esposito, Irene Paterniti, Placido Bramanti, and Salvatore Cuzzocrea. 2011. Effect of apocynin, an inhibitor of NADPH oxidase, in the inflammatory process induced by an experimental model of spinal cord injury. Free Radical Research 45 (2): 221–236. https://doi.org/10.3109/10715762.2010.526604.

    Article  CAS  PubMed  Google Scholar 

  66. Sun, Yijun, Futai Gong, Jichao Yin, Xiaoyan Wang, Xiangyang Wang, Qing Sun, Zhiqiang Zhu, Su Xiaoqiang, Jie Zheng, Li Liu, Yang Li, Hu Xinglv, and Jia Li. 2017. Therapeutic effect of apocynin through antioxidant activity and suppression of apoptosis and inflammation after spinal cord injury. Experimental and Therapeutic Medicine 13 (3): 952–960. https://doi.org/10.3892/etm.2017.4090.

  67. Barbieri, Silvia S., Viviana Cavalca, Sonia Eligini, Marta Brambilla, Alessia Caiani, Elena Tremoli, and Susanna Colli. 2004. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radical Biology & Medicine 37 (2): 156–165. https://doi.org/10.1016/j.freeradbiomed.2004.04.020.

    Article  CAS  Google Scholar 

  68. Hamilton, Carlene A., Julia M. Brosnan, Sammy Al-Benna, Geoffrey Berg, and Anna F. Dominiczak. 2002. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. Hypertension (Dallas, Tex. 1979) 40 (5): 755–762. https://doi.org/10.1161/01.hyp.0000037063.90643.0b.

  69. Rosa, C.M., R. Gimenes, D.H.S. Campos, G.N. Guirado, C. Gimenes, A.A.H. Fernandes, A.C. Cicogna, R.M. Queiroz, I. Falcão-Pires, D. Miranda-Silva, P. Rodrigues, F.R. Laurindo, D.C. Fernandes, C.R. Correa, M.P. Okoshi, and K. Okoshi. 2016. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovascular Diabetology 15 (1): 126. https://doi.org/10.1186/s12933-016-0442-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mizanur, Rahman, Md., Awale Yousuf Muse, D.M. Isha Olive Khan, Ismaile Hussein Ahmed, Nusrat Subhan, Hasan Mahmud Reza, Md Ashraful Alam, Lutfun Nahar, and Satyajit Dey Sarker. 2017. Apocynin prevented inflammation and oxidative stress in carbon tetra chloride induced hepatic dysfunction in rats. Biomedicine & Pharmacotherapy 92: 421–428. https://doi.org/10.1016/j.biopha.2017.05.101.

    Article  CAS  Google Scholar 

  71. Kapoor, Monika, Sheetal Sharma, Rajat Sandhir, and Bimla Nehru. 2021. Maintenance of iron homeostasis by apocynin during states of global ischemia in rat brain and retina. Advances in Redox Research 3: 100012. https://doi.org/10.1016/j.arres.2021.100012.

    Article  CAS  Google Scholar 

  72. Schrödl, Wieland, Rita Büchler, Sindy Wendler, Petra Reinhold, Petra Muckova, Johanna Reindl, and Heidrun Rhode. 2016. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteomics Clinical Applications 10 (11): 1077–1092. https://doi.org/10.1002/prca.201600028.

    Article  CAS  PubMed  Google Scholar 

  73. Vavricka, Stephan R., Alain Schoepfer, Michael Scharl, Peter L. Lakatos, Alexander Navarini, and Gerhard Rogler. 2015. Extraintestinal manifestations of inflammatory bowel disease. Inflammatory Bowel Diseases 21 (8): 1982–1992. https://doi.org/10.1097/MIB.0000000000000392.

    Article  PubMed  Google Scholar 

  74. Serada, Satoshi, Minoru Fujimoto, Fumitaka Terabe, Hideki Iijima, Shinichiro Shinzaki, Shinya Matsuzaki, Tomoharu Ohkawara Tomoharu, Riichiro Nakajima Nezu, Sachiko Kobayashi, Taku Plevy, Scott Eric Takehara, and Tetsuo and Naka Tetsuji. 2012. Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis. Inflammatory Bowel Diseases 18 (11): 2169–2179. https://doi.org/10.1002/ibd.22936.

    Article  PubMed  Google Scholar 

  75. Wagner, Michael, Christer GB. Peterson, Peter Ridefelt, Per Sangfelt, and Marie Carlson. 2008. Fecal markers of inflammation used as surrogate markers for treatment outcome in relapsing inflammatory bowel disease. World Journal of Gastroenterology 14 (36): 5584–5588. https://doi.org/10.3748/wjg.14.5584.

    Article  PubMed  PubMed Central  Google Scholar 

  76. de Almeida, Ana, Otávio Cabral Carolina, Christina Arslanian Marques, Antonio Condino-Neto, and Valdecir F. Ximenes. 2011. 4-Fluoro-2-methoxyphenol, an apocynin analog with enhanced inhibitory effect on leukocyte oxidant production and phagocytosis. European Journal of Pharmacology 660 (2–3): 445–453. https://doi.org/10.1016/j.ejphar.2011.03.043.

Download references

ACKNOWLEDGEMENTS

The authors would like to thank the INSERM, the CNRS, the University of Paris-cité, the LabEx Inflamex and the Tunisian DGRST for providing laboratory facilities during this study.

Funding

The research was funded by the INSERM, the CNRS, the City University of Paris and the DGRST of the Tunisian Ministry of Higher Education, Scientific Research and Technology.

Author information

Authors and Affiliations

Authors

Contributions

A. K. contributed to the methodology, statistical analysis, animal experiments and drafting of the manuscript. W. F., P. M.-C. D., N. G.-B. and A. S. contributed to the data curation, formal analysis, critical revision, visualisation and validation. All authors read and approved the manuscript. J. E.-B. and M. B.-A. contributed to the study design, methodology, drafting, critical revision, editing and validation.

Corresponding author

Correspondence to Jamel El-Benna.

Ethics declarations

Ethical Approval and Consent to Participate

The experimental protocols (No. 0123/2022 ATSAL) were approved by the Ethics Committee of the Tunisian Association of Laboratory Animal Sciences and were carried out in accordance with the European Community Council Directive of 24 November 1986. Consent to participate is not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouki, A., Ferjani, W., Dang, P.MC. et al. Preventive Anti-inflammatory Effects of Apocynin on Acetic Acid–Induced Colitis in Rats. Inflammation 47, 438–453 (2024). https://doi.org/10.1007/s10753-023-01920-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01920-4

KEY WORDS

Navigation