Skip to main content
Log in

Activation of HSP70 impedes tert-butyl hydroperoxide (t-BHP)-induced apoptosis and senescence of human nucleus pulposus stem cells via inhibiting the JNK/c-Jun pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The endogenous repair failure of degenerated intervertebral disk (IVD) is highly related to the exhaustion of nucleus pulposus stem cells (NPSCs). Excessive oxidative stress could induce apoptosis and senescence of NPSCs, thus, declining the quantity and quality of NPSCs. Heat shock protein 70 (HSP70) is a family of cytoprotective and antioxidative proteins. However, there is no report on the protective effects of HSP70 on oxidative stress-induced NPSC impairments and underlying mechanisms. In the present study, we treated NPSCs with tert-butyl hydroperoxide (t-BHP) in vitro to simulate an oxidative stress condition. HSP70 inducer TRC051384 was used to evaluate the cytoprotective effects of HSP70. The results suggested that HSP70 impeded t-BHP-mediated cell viability loss and protected the ultrastructure of NPSCs. Moreover, t-BHP could induce mitochondrial apoptosis and p53/p21-mediated senescence of NPSCs, both of which were significantly inhibited in HSP70 activation groups. Excessive oxidative stress and mitochondrial dysfunction reinforced each other and contributed to the cellular damage processes. HSP70 decreased reactive oxygen species (ROS) production, rescued mitochondrial membrane potential (MMP) collapse, and blocked ATP depletion. Finally, our data showed that HSP70 downregulated the JNK/c-Jun pathway. Taken together, activation of HSP70 could protect against t-BHP-induced NPSC apoptosis and senescence, thus, improving the quantity and quality of NPSCs. Therefore, HSP70 may be a promising therapeutic target for IVD degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the manuscript.

Abbreviations

LBP:

Low back pain

IVD:

Intervertebral disk

IVDD:

Intervertebral disk degeneration

NP:

Nucleus pulposus

NPSC:

Nucleus pulposus stem cell

HSP70:

Heat shock protein 70

JNK:

C-Jun N-terminal kinase

CCK-8:

Cell-counting kit-8

PI:

Propidium iodide

TEM:

Transmission electron microscopy

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

mtROS:

Mitochondrial ROS

MMP:

Mitochondrial membrane potential

SASP:

Senescence-associated secretory phenotype

TRC:

TRC051384

t-BHP:

Tert-Butyl hydroperoxide

NS:

No statistically significant difference

Reference

  1. Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, Hoy D, Karppinen J, Pransky G, Sieper J, Smeets RJ, Underwood M (2018) What low back pain is and why we need to pay attention. Lancet 391:2356–2367. https://doi.org/10.1016/s0140-6736(18)30480-x

    Article  PubMed  Google Scholar 

  2. Vergroesen PP, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieen JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 23:1057–1070. https://doi.org/10.1016/j.joca.2015.03.028

    Article  Google Scholar 

  3. Hu B, He R, Ma K, Wang Z, Cui M, Hu H, Rai S, Wang B, Shao Z (2018) Intervertebral disc-derived stem/progenitor cells as a promising cell source for intervertebral disc regeneration. Stem Cells Int 2018:7412304. https://doi.org/10.1155/2018/7412304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tao Y, Zhou X, Liang C, Li H, Han B, Li F, Chen Q (2015) TGF-beta3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling. Growth Factors 33:326–336. https://doi.org/10.3109/08977194.2015.1088532

    Article  CAS  PubMed  Google Scholar 

  5. Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS, Yamamura K, Masuda K, Okano H, Ando K, Mochida J (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264. https://doi.org/10.1038/ncomms2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen S, Lv X, Hu B, Zhao L, Li S, Li Z, Qing X, Liu H, Xu J, Shao Z (2018) Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis. Apoptosis 23:299–313. https://doi.org/10.1007/s10495-018-1455-x

    Article  CAS  PubMed  Google Scholar 

  7. Ma KG, Shao ZW, Yang SH, Wang J, Wang BC, Xiong LM, Wu Q, Chen SF (2013) Autophagy is activated in compression-induced cell degeneration and is mediated by reactive oxygen species in nucleus pulposus cells exposed to compression. Osteoarthr Cartil 21:2030–2038. https://doi.org/10.1016/j.joca.2013.10.002

    Article  Google Scholar 

  8. Feng C, Liu H, Yang M, Zhang Y, Huang B, Zhou Y (2016) Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways. Cell Cycle 15:1674–1684. https://doi.org/10.1080/15384101.2016.1152433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng C, Yang M, Lan M, Liu C, Zhang Y, Huang B, Liu H, Zhou Y (2017) ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid Med Cell Longev 2017:5601593. https://doi.org/10.1155/2017/5601593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu Y, Shao Z, Cai X, Liu Y, Shen M, Yao Y, Yuan T, Wang W, Ding F, Xiong L (2019) Mitochondrial Pathway Is Involved in Advanced Glycation End Products-Induced Apoptosis of Rabbit Annulus Fibrosus Cells. Spine (Phila Pa 1976) 44:E585–E595. https://doi.org/10.1097/brs.0000000000002930

    Article  Google Scholar 

  12. Martinez de Toda I, De la Fuente M (2015) The role of Hsp70 in oxi-inflamm-aging and its use as a potential biomarker of lifespan. Biogerontology 16:709–721. https://doi.org/10.1007/s10522-015-9607-7

    Article  CAS  PubMed  Google Scholar 

  13. Tonomura H, Takahashi KA, Mazda O, Arai Y, Inoue A, Terauchi R, Shin-Ya M, Kishida T, Imanishi J, Kubo T (2006) Glutamine protects articular chondrocytes from heat stress and NO-induced apoptosis with HSP70 expression. Osteoarthr Cartil 14:545–553. https://doi.org/10.1016/j.joca.2005.12.008

    Article  CAS  Google Scholar 

  14. Terauchi R, Takahashi KA, Arai Y, Ikeda T, Ohashi S, Imanishi J, Mazda O, Kubo T (2003) Hsp70 prevents nitric oxide-induced apoptosis in articular chondrocytes. Arthritis Rheum 48:1562–1568. https://doi.org/10.1002/art.11040

    Article  CAS  PubMed  Google Scholar 

  15. Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI (2012) Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 123:542–554. https://doi.org/10.1111/j.1471-4159.2012.07927.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Huang Y, Feng X, Chen J, Duan Y (2019) Overexpressed Hsp70 alleviated formaldehyde-induced apoptosis partly via PI3K/Akt signaling pathway in human bronchial epithelial cells. Environ Toxicol 34:495–504. https://doi.org/10.1002/tox.22703

    Article  CAS  PubMed  Google Scholar 

  17. Etienne S, Gaborit N, Henrionnet C, Pinzano A, Galois L, Netter P, Gillet P, Grossin L (2008) Local induction of heat shock protein 70 (Hsp70) by proteasome inhibition confers chondroprotection during surgically induced osteoarthritis in the rat knee. Biomed Mater Eng 18:253–260. https://doi.org/10.3233/BME-2008-0534

    Article  CAS  PubMed  Google Scholar 

  18. Tonomura H, Takahashi KA, Mazda O, Arai Y, Shin-Ya M, Inoue A, Honjo K, Hojo T, Imanishi J, Kubo T (2008) Effects of heat stimulation via microwave applicator on cartilage matrix gene and HSP70 expression in the rabbit knee joint. J Orthop Res 26:34–41. https://doi.org/10.1002/jor.20421

    Article  CAS  PubMed  Google Scholar 

  19. Yi H, Huang G, Zhang K, Liu S, Xu W (2018) HSP70 protects rats and hippocampal neurons from central nervous system oxygen toxicity by suppression of NO production and NF-kappaB activation. Exp Biol Med (Maywood) 243:770–779. https://doi.org/10.1177/1535370218773982

    Article  CAS  Google Scholar 

  20. Wako M, Ohba T, Ando T, Arai Y, Koyama K, Hamada Y, Nakao A, Haro H (2008) Mechanism of signal transduction in tumor necrosis factor-like weak inducer of apoptosis-induced matrix degradation by MMP-3 upregulation in disc tissues. Spine (Phila Pa 1976) 33:2489–2494. https://doi.org/10.1097/BRS.0b013e318186b343

    Article  Google Scholar 

  21. Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21:379–404. https://doi.org/10.1007/s12192-016-0676-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takao T, Iwaki T (2002) A comparative study of localization of heat shock protein 27 and heat shock protein 72 in the developmental and degenerative intervertebral discs. Spine (Phila Pa 1976) 27:361–368. https://doi.org/10.1097/00007632-200202150-00007

    Article  Google Scholar 

  23. Mohanan A, Deshpande S, Jamadarkhana PG, Kumar P, Gupta RC, Chauthaiwale V, Dutt C (2011) Delayed intervention in experimental stroke with TRC051384—a small molecule HSP70 inducer. Neuropharmacology 60:991–999. https://doi.org/10.1016/j.neuropharm.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  24. Hu Y, Huang L, Shen M, Liu Y, Liu G, Wu Y, Ding F, Ma K, Wang W, Zhang Y, Shao Z, Cai X, Xiong L (2019) Pioglitazone protects compression-mediated apoptosis in nucleus pulposus mesenchymal stem cells by suppressing oxidative stress. Oxid Med Cell Longev 2019:4764071. https://doi.org/10.1155/2019/4764071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu B, Zhang S, Liu W, Wang P, Chen S, Lv X, Shi D, Ma K, Wang B, Wu Y, Shao Z (2020) Inhibiting heat shock protein 90 protects nucleus pulposus-derived stem/progenitor cells from compression-induced necroptosis and apoptosis. Front Cell Dev Biol 8:685. https://doi.org/10.3389/fcell.2020.00685

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu F, Zhou J, Lu Y, Guan L, Wei NN, Tang YQ, Wang K (2019) Inhibition of Hsp70 suppresses neuronal hyperexcitability and attenuates epilepsy by enhancing A-type potassium current. Cell Rep 26:168-181.e164. https://doi.org/10.1016/j.celrep.2018.12.032

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Chen S, Ma K, Lv X, Lin H, Hu B, He R, Shao Z (2018) CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress. Life Sci 205:26–37. https://doi.org/10.1016/j.lfs.2018.05.014

    Article  CAS  PubMed  Google Scholar 

  28. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972. https://doi.org/10.1172/jci64098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song Y, Li S, Geng W, Luo R, Liu W, Tu J, Wang K, Kang L, Yin H, Wu X, Gao Y, Zhang Y, Yang C (2018) Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration. Redox Biol 19:339–353. https://doi.org/10.1016/j.redox.2018.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimozi A, Mavrogonatou E, Sklirou A, Kletsas D (2015) Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells. Eur Cell Mater 30:89–102; discussion 103. https://doi.org/:https://doi.org/10.22203/ecm.v030a07

  31. Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P (2011) Oxidative stress induces senescence in chondrocytes. J Orthop Res 29:1114–1120. https://doi.org/10.1002/jor.21348

    Article  CAS  PubMed  Google Scholar 

  32. Liu R, Liu H, Ha Y, Tilton RG, Zhang W (2014) Oxidative stress induces endothelial cell senescence via downregulation of Sirt6. Biomed Res Int 2014:902842. https://doi.org/10.1155/2014/902842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739. https://doi.org/10.1074/jbc.M509497200

    Article  CAS  PubMed  Google Scholar 

  34. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475. https://doi.org/10.1038/35019501

    Article  CAS  PubMed  Google Scholar 

  35. Dahiya V, Agam G, Lawatscheck J, Rutz DA, Lamb DC, Buchner J (2019) Coordinated conformational processing of the tumor suppressor protein p53 by the Hsp70 and Hsp90 chaperone machineries. Mol Cell 74:816-830.e817. https://doi.org/10.1016/j.molcel.2019.03.026

    Article  CAS  PubMed  Google Scholar 

  36. Bobkova NV, Evgen’ev M, Garbuz DG, Kulikov AM, Morozov A, Samokhin A, Velmeshev D, Medvinskaya N, Nesterova I, Pollock A, Nudler E (2015) Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc Natl Acad Sci USA 112:16006–16011. https://doi.org/10.1073/pnas.1516131112

    Article  CAS  PubMed  Google Scholar 

  37. Wen XR, Tang M, Qi DS, Huang XJ, Liu HZ, Zhang F, Wu J, Wang YW, Zhang XB, Guo JQ, Wang SL, Liu Y, Wang YL, Song YJ (2016) Butylphthalide suppresses neuronal cells apoptosis and inhibits JNK-Caspase3 signaling pathway after brain ischemia /reperfusion in rats. Cell Mol Neurobiol 36:1087–1095. https://doi.org/10.1007/s10571-015-0302-7

    Article  CAS  PubMed  Google Scholar 

  38. Ge HX, Zou FM, Li Y, Liu AM, Tu M (2017) JNK pathway in osteoarthritis: pathological and therapeutic aspects. J Recept Signal Transduct Res 37:431–436. https://doi.org/10.1080/10799893.2017.1360353

    Article  CAS  PubMed  Google Scholar 

  39. Loeser RF, Erickson EA, Long DL (2008) Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. Curr Opin Rheumatol 20:581–586. https://doi.org/10.1097/BOR.0b013e3283090463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee JH, Ko HJ, Woo ER, Lee SK, Moon BS, Lee CW, Mandava S, Samala M, Lee J, Kim HP (2016) Moracin M inhibits airway inflammation by interrupting the JNK/c-Jun and NF-kappaB pathways in vitro and in vivo. Eur J Pharmacol 783:64–72. https://doi.org/10.1016/j.ejphar.2016.04.055

    Article  CAS  PubMed  Google Scholar 

  41. Wei B, Bai X, Chen K, Zhang X (2016) SP600125 enhances the anti-apoptotic capacity and migration of bone marrow mesenchymal stem cells treated with tumor necrosis factor-alpha. Biochem Biophys Res Commun 475:301–307. https://doi.org/10.1016/j.bbrc.2016.05.107

    Article  CAS  PubMed  Google Scholar 

  42. Cano M, Guerrero-Castilla A, Nabavi SM, Ayala A, Arguelles S (2019) Targeting pro-senescence mitogen activated protein kinase (Mapk) enzymes with bioactive natural compounds. Food Chem Toxicol 131:110544. https://doi.org/10.1016/j.fct.2019.05.052

    Article  CAS  PubMed  Google Scholar 

  43. Yang LW, Song M, Li YL, Liu YP, Liu C, Han L, Wang ZH, Zhang W, Xing YQ, Zhong M (2019) L-Carnitine inhibits the senescence-associated secretory phenotype of aging adipose tissue by JNK/p53 pathway. Biogerontology 20:203–211. https://doi.org/10.1007/s10522-018-9787-z

    Article  CAS  PubMed  Google Scholar 

  44. Xu HG, Cheng JF, Peng HX, Lv K, Wang H, Liu P, Zhong M, Zhang MY (2013) JNK phosphorylation promotes natural degeneration of cervical endplate chondrocytes by down-regulating expression of ANK. Eur Rev Med Pharmacol Sci 17:2335–2344

    PubMed  Google Scholar 

  45. Ma C, Zhang Y, Li YQ, Chen C, Cai W, Zeng YL (2015) The role of PPARgamma in advanced glycation end products-induced inflammatory response in human chondrocytes. PLoS ONE 10:e0125776. https://doi.org/10.1371/journal.pone.0125776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu WW, Cao SN, Zang CX, Wang L, Yang HY, Bao XQ, Zhang D (2018) Heat shock protein 70 suppresses neuroinflammation induced by alpha-synuclein in astrocytes. Mol Cell Neurosci 86:58–64. https://doi.org/10.1016/j.mcn.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Liu L, Xing D, Chen WR (2010) Inhibition of the JNK/Bim pathway by Hsp70 prevents Bax activation in UV-induced apoptosis. FEBS Lett 584:4672–4678. https://doi.org/10.1016/j.febslet.2010.10.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li C, Sunderic K, Nicoll SB, Wang S (2018) Downregulation of heat shock protein 70 impairs osteogenic and chondrogenic differentiation in human mesenchymal stem cells. Sci Rep 8:553. https://doi.org/10.1038/s41598-017-18541-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the researchers and study participants for their contributions.

Funding

This study was funded by the Major Research Plan of National Natural Science Foundation of China (Grants 91649204), the National Natural Science Foundation of China (No. 81974352), and the National Key Research and Development Program of China (Grants 2016YFC1100100).

Author information

Authors and Affiliations

Authors

Contributions

ZS and BW contributed to the study conception and design. SZ, WL, and PW performed the experiments and analyzed the data. BH wrote the first draft of the manuscript. XL and SC substantially edited the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Baichuan Wang or Zengwu Shao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Experimental protocols of the present study were approved by the medical ethics committee of Tongji Medical College, Huazhong University of Science and Technology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 The transfection efficacy of siRNA for

HSPA1A. (a) The mRNA levels of HSPA1A in human NPSCs. Data were normalized to GAPDH. (b) Representative western blot graphs and statistical analysis of HSP70 expression in human NPSCs. (TIF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Liu, W., Wang, P. et al. Activation of HSP70 impedes tert-butyl hydroperoxide (t-BHP)-induced apoptosis and senescence of human nucleus pulposus stem cells via inhibiting the JNK/c-Jun pathway. Mol Cell Biochem 476, 1979–1994 (2021). https://doi.org/10.1007/s11010-021-04052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04052-1

Keywords

Navigation