Skip to main content
Log in

TMEM166 inhibits cell proliferation, migration and invasion in hepatocellular carcinoma via upregulating TP53

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Transmembrane protein 166 (TMEM166), an endoplasmic reticulum-associated protein, functions in many diseases via regulating autophagy and/or apoptosis. However, the role of TMEM166 in hepatocellular carcinoma (HCC) remains largely unknown. In this study, we detected the expression of TMEM166 in HCC by real-time fluorescent quantitative PCR (RT-qPCR), immunohistochemistry and western blot. To investigate its biological function and underlying mechanism in HCC, TMEM166 was overexpressed in HCC cell lines and assessed its effects on cell proliferation, migration, invasion, apoptosis and cell cycle by MTT assay, wound healing assay, Transwell assay, Annexin V-FITC/PI assay, JC-1 staining and flow cytometry assay, respectively. Results demonstrated that the expression of TMEM166 was significantly decreased in HCC and was associated with advanced TNM clinical stage and poor clinical outcome of HCC patients. TMEM166 overexpression inhibited HCC cells proliferation, migration and invasion. Furthermore, TMEM166 inhibited cell proliferation by inducing apoptosis and cell cycle arrest via upregulating anti-oncogene TP53 and TP53 knockdown significantly alleviated the anti-tumor effects of TMEM166 on HCC cells. This study provides the first comprehensive analysis the role of TMEM166 in HCC. TMEM166 displays a fine anti-tumor activity on HCC cells involving a mechanism of upregulating TP53. This study suggests TMEM166 is a potential target for the treatment of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Segal R, Miller K, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    PubMed  Google Scholar 

  3. Zeng HM, Zheng RS, Guo YM et al (2015) Cancer survival in China, 2003–2005: a population-based study. Int J Cancer 136:1921–1930

    Article  CAS  PubMed  Google Scholar 

  4. Pinter M, Peck-Radosavljevic M (2018) Review article: systemic treatment of hepatocellular carcinoma. Aliment Pharmacol Ther 48:598–609

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bruix J, Gores GJ, Mazzaferro V (2014) Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63:844–855

    Article  CAS  PubMed  Google Scholar 

  6. El-Serag HB, Marrero JA, Rudolph L, Reddy KR (2008) Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134:1752–1763

    Article  PubMed  Google Scholar 

  7. Bruix J, Qin S, Merle P et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Yu CF, Lu Y et al (2007) TMEM166, a novel transmembrane protein, regulates cell autophagy and apoptosis. Apoptosis 12:1489–1502

    Article  CAS  PubMed  Google Scholar 

  9. Chang Y, Li YJ, Hu J et al (2013) Adenovirus vector-mediated expression of TMEM166 inhibits human cancer cell growth by autophagy and apoptosis in vitro and in vivo. Cancer Lett 328:126–134

    Article  CAS  PubMed  Google Scholar 

  10. Xie H, Jia J, Huan P et al (2014) Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells. BMB Rep 47:104–109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shen X, Kan S, Liu Z et al (2017) EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis. Exp Cell Res 352:130–138

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Khatibi NH, Hu Q et al (2012) Transmembrane protein 166 regulates autophagic and apoptotic activities following focal cerebral ischemic injury in rats. Exp Neurol 234:181–190

    Article  CAS  PubMed  Google Scholar 

  13. Xu D, Yang F, He H et al (2013) Expression of TMEM166 protein in human normal and tumor tissues. Appl Immunohistochem Mol Morphol 21:543–552

    Article  CAS  PubMed  Google Scholar 

  14. Ming T, Xuey S (2015) Expression profile and potential roles of EVA1A in normal and neoplastic pancreatic tissues. Asian Pac J Cancer Prev 16:373–376

    Article  Google Scholar 

  15. Sun W, Ma XM, Bai JP et al (2012) Transmembrane protein 166 expression in esophageal squamous cell carcinoma in Xinjiang, China. Asian Pac J Cancer Prev 13:3713–3716

    Article  PubMed  Google Scholar 

  16. Hu J, Li G, Qu L et al (2016) EVA1A/TMEM166 interacts with ATG16L1 and induces autophagosome formation and cell death. Cell Death Dis 7:e2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu GD, Ang YH, Zhou J et al (2015) CCAAT/enhancer binding protein alpha predicts poorer prognosis and prevents energy starvation-induced cell death in hepatocellular carcinoma. Hepatology 61:965–978

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Lu G, Hu J et al (2016) EVA1A/TMEM166 regulates embryonic neurogenesis by autophagy. Stem Cell Rep 6:396–410

    Article  CAS  Google Scholar 

  19. Zhang S, Lin X, Li G et al (2017) Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy. Cell Death Dis 8:e2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin X, Cui M, Xu D et al (2018) Liver-specific deletion of Eva1a/Tmem166 aggravates acute liver injury by impairing autophagy. Cell Death Dis 7:768

    Article  Google Scholar 

  21. Liu H, Li F, Zhang X et al (2018) Differentially expressed intrahepatic genes contribute to control of hepatitis B virus replication in the inactive carrier phase. J Infect Dis 217:1044–1054

    Article  CAS  PubMed  Google Scholar 

  22. Yogosawa S, Yoshida K (2018) Tumor suppressive role for kinases phosphorylating TP53 in DNA damage-induced apoptosis. Cancer Sci 109:3376–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liebermann DA, Hoffman B, Vesely D (2007) TP53 induced growth arrest versus apoptosis and its modulation by survival cytokines. Cell Cycle 6:66–170

    Article  Google Scholar 

  24. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A (2018) How does TP53 induce apoptosis and how does this relate to TP53-mediated tumor suppression? Cell Death Differ 25:104–113

    Article  CAS  PubMed  Google Scholar 

  25. Miyashita T, Reed JC (1995) Tumor suppressor TP53 is a direct transcriptional activator of the human BAX gene. Cell 80:293–299

    Article  CAS  PubMed  Google Scholar 

  26. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by TP53. Mol Cell 7:683–694

    Article  CAS  PubMed  Google Scholar 

  27. Oda E, Ohki R, Murasawa H, Nemoto J et al (2000) Noxa, a BH3-only member of the BCL-2 familyand candidate mediator of TP53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  28. Miyashita T, Harigai M, Hanada M et al (1994) Identification of a TP53-dependent negative response element in the BCL-2 gene. Cancer Res 54:3131–3135

    CAS  PubMed  Google Scholar 

  29. Spierings D, McStay G, Saleh M et al (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–67

    Article  CAS  PubMed  Google Scholar 

  30. Wolff S, Erster S, Palacios G, Moll UM (2008) TP53’s mitochondrial translocation and MOMP action is independent of puma and BAX and severely disrupts mitochondrial membrane integrity. Cell Res 18:733–744

    Article  CAS  PubMed  Google Scholar 

  31. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 94:00–14

    Google Scholar 

  32. Zhang X, Cheng Q, Yin H et al (2017) Regulation of autophagy and EMT by the interplay between TP53 and RAS during cancer progression (Review). Int J Oncol 51:18–24

    Article  CAS  PubMed  Google Scholar 

  33. Niehus SE, Allister AB, Hoffmann A et al (2019) Myc/Max dependent intronic long antisense noncoding RNA, EVA1A-AS, suppresses the expression of Myc/Max dependent anti-proliferating gene EVA1A in a U2 dependent manner. Sci Rep 9:17319

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ren WW, Li DD, Chen X et al (2018) MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy. Cell Death Dis 9:547

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yingyu Chen from Peking University Health Science Center for providing us with TMEM166 plasmid. This work was supported by China Postdoctoral Science Foundation Special Funding Project (Grant Number 2016T90612); China Postdoctoral Science Foundation Funded Project (Grant Number 2015M57074) and Qingdao Applied Basic Research Program Youth Project (Grant Number 19-6-2-59-cg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Ethics declarations

Conflict of interest

There is no conflict of interest in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, B., Xu, Q. et al. TMEM166 inhibits cell proliferation, migration and invasion in hepatocellular carcinoma via upregulating TP53. Mol Cell Biochem 476, 1151–1163 (2021). https://doi.org/10.1007/s11010-020-03979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03979-1

Keywords

Navigation