Skip to main content

Advertisement

Log in

Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetic peripheral neuropathy (DPN) is one of the most important complications in diabetes mellitus (DM), which has been reported to be modulated by long non-coding RNAs (lncRNAs). The purpose of the current study is to explore the regulatory mechanism of lncRNA HCG18 on DPN in vitro. The expression of lncRNA HCG18, miR-146a, TRAF6, CD11c, and iNOS was detected by qRT-PCR. Through Enzyme-linked immunosorbent assay, the levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were determined. M1 macrophage polarization was measured by flow cytometry analysis. The interactions between miR-146a and HCG18/TRAF6 were predicted by Starbase/Targetscan software and verified by the dual luciferase reporter assay. Western blot assay was performed to determine the protein expression of TRAF6. LncRNA HCG18 was highly expressed in DPN model and HG-induced macrophages. The levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were elevated in DPN model. The expression of M1 markers (CD11c and iNOS) was visibly up-regulated in DPN model and was positively correlated with HCG18 expression. LncRNA HCG18 facilitated M1 macrophage polarization. In addition, miR-146a was identified as a target of lncRNA HCG18. Overexpression of miR-146a reversed the promoting effect of HCG18 on M1 macrophage polarization. Simultaneously, TRAF6 was a target gene of miR-146a TRAF6 expression was positively modulated by HCG18 and was negatively modulated by miR-146a. Down-regulation of TRAF6 reversed the promoting effect of HCG18 on M1 macrophage polarization. LncRNA HCG18 promotes M1 macrophage polarization via regulating the miR-146a/TRAF6 axis, facilitating the progression of DPN. This study provides a possible therapeutic strategy for DPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data in the manuscript is available through the responsible corresponding author.

References

  1. Ogurtsova K, Rocha Fernandes JDD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    CAS  PubMed  Google Scholar 

  2. Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X (2018) Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Design Development & Therapy 12:171–177

    Article  CAS  Google Scholar 

  3. Davies M, Brophy S, Williams R, Taylor A (2006) The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 29(7):1518–1522. https://doi.org/10.2337/dc05-2228

    Article  PubMed  Google Scholar 

  4. Booya F, Bandarian F, Larijani B, Pajouhi M, Nooraei M, Lotfi J (2005) Potential risk factors for diabetic neuropathy: a case control study. BMC Neurol 5:24. https://doi.org/10.1186/1471-2377-5-24

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh R, Kishore L, Kaur N (2014) Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res 80:21–35

    Article  CAS  PubMed  Google Scholar 

  6. Zenker J, Ziegler D, Chrast R (2013) Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 36(8):439–449. https://doi.org/10.1016/j.tins.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Li B, Chen B, Shao Y, Luo Q, Shi X, Chen Y (2016) Thymoquinone Alleviates the Experimental Diabetic Peripheral Neuropathy by Modulation of Inflammation. Sci Rep 6:31656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pop-Busui R, Ang L, Holmes C, Gallagher K, Feldman EL (2016) Inflammation as a Therapeutic Target for Diabetic Neuropathies. Curr Diab Rep 16(3):29

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA (2006) Enhanced inflammatory response via activation of NF-kappaB in acute experimental diabetic neuropathy subjected to ischemia-reperfusion injury. J Neurol Sci 247(1):47–52. https://doi.org/10.1016/j.jns.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  10. Mu Z-P, Wang Y-G, Li C-Q, Lv W-S, Wang B, Jing Z-H, Song X-J, Lun Y, Qiu M-Y, Ma X-L (2017) Association Between Tumor Necrosis Factor-α and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes: a Meta-Analysis. Mol Neuron 54(2):983–996

    Article  CAS  Google Scholar 

  11. Chandramoorthy HC, Bin-Jaliah I, Karari H, Rajagopalan P, Haidara MA (2017) MSCs Ameliorates DPN induced Cellular Pathology via [Ca(2+) ]i Homeostasis and Scavenging the Pro-inflammatory cytokines. J Cell Physiol 233(2):1330–1341

    Article  PubMed  Google Scholar 

  12. Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J (2016) Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today: S1359644616302938

  13. Bories GFP, Leitinger N (2017) Macrophage metabolism in atherosclerosis. FEBS Lett 591(19):3042

    Article  CAS  PubMed  Google Scholar 

  14. Tardito S, Martinelli G, Soldano S, Paolino S, Cutolo M (2019) Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev 18(11):102397

    Article  CAS  PubMed  Google Scholar 

  15. Moghaddam AS, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization and function in health and disease. J Cell Physiol

  16. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121(3):985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xie Y, Wang M, Tian J, Li X, Yang M, Zhang K, Tan S, Luo L, Luo C, Peng L, Tang A (2019) Long non-coding RNA expressed in macrophage co-varies with the inflammatory phenotype during macrophage development and polarization. J Cell Mol Med 23(10):6530–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chi X, Ding B, Zhang L, Zhang J, Wang J, Zhang W (2019) lncRNA GAS5 promotes M1 macrophage polarization via miR-455-5p/SOCS3 pathway in childhood pneumonia. J Cell Physiol 234(8):13242–13251. https://doi.org/10.1002/jcp.27996

    Article  CAS  PubMed  Google Scholar 

  19. Pei W, Zhang Y, Li X, Luo M, Chen T, Zhang M, Zhong M, Lv K (2020) LncRNA AK085865 depletion ameliorates asthmatic airway inflammation by modulating macrophage polarization. Int Immunopharmacol 83:106450. https://doi.org/10.1016/j.intimp.2020.106450

    Article  CAS  PubMed  Google Scholar 

  20. Xi Y, Jiang T, Wang W, Yu J, Wang Y, Wu X, He Y (2017) Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep 7(1):13234

    Article  PubMed  PubMed Central  Google Scholar 

  21. El Gazzar M, Mccall CE (2012) MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol Cell Biol 90(6):587–593

    Article  PubMed  Google Scholar 

  22. Graff JW, Dickson AM, Clay G, Mccaffrey AP, Wilson ME (2012) Identifying Functional MicroRNAs in Macrophages with Polarized Phenotypes. J Biol Chem 287(26):21816–21825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu J, Huang C-X, Rao P-P, Zhou J-P, Wang X, Tang L, Liu M-X, Zhang G-G (2019) Inhibition of microRNA-155 attenuates sympathetic neural remodeling following myocardial infarction via reducing M1 macrophage polarization and inflammatory responses in mice. Eur J Pharmacol 851:122–132

    Article  CAS  PubMed  Google Scholar 

  24. An TH, He QW, Xia YP, Chen SC, Baral S, Mao L, Jin HJ, Li YN, Wang MD, Chen JG, Zhu LQ, Hu B (2017) MiR-181b Antagonizes Atherosclerotic Plaque Vulnerability Through Modulating Macrophage Polarization by Directly Targeting Notch1. Mol Neurobiol 54(8):6329–6341. https://doi.org/10.1007/s12035-016-0163-1

    Article  CAS  PubMed  Google Scholar 

  25. Liu XS, Fan B, Szalad A, Jia L, Zhang ZG (2017) MicroRNA-146a Mimics Reduce the Peripheral Neuropathy in Type 2 Diabetic Mice. Diabetes 66(12):db161182

    Article  Google Scholar 

  26. Huang C, Liu XJ, QunZhou XJ, Li J (2016) MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol 32:46–54

    Article  PubMed  Google Scholar 

  27. Tesfaye S, Selvarajah D (2012) Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 28(1):8–14. https://doi.org/10.1002/dmrr.2239

    Article  PubMed  Google Scholar 

  28. Du H, Liu Z, Tan X, Ma Y, Gong Q (2018) Identification of the Genome-wide Expression Patterns of Long Non-coding RNAs and mRNAs in Mice with Streptozotocin-induced Diabetic Neuropathic Pain. Neuron 402:90–103

    Google Scholar 

  29. Li G, Sheng X, Xu Y, Jiang H, Zheng C, Guo J, Sun S, Yi Z, Qin S, Liu S (2016) Co-expression changes of lncRNAs and mRNAs in the cervical sympathetic ganglia in diabetic cardiac autonomic neuropathic rats. J Neurosci Res 95(8):1690–1699

    Article  PubMed  Google Scholar 

  30. Liu C, Tao J, Wu H, Yang Y, Chen Q, Deng Z, Liu J, Xu C (2017) Effects of LncRNA BC168687 siRNA on Diabetic Neuropathic Pain Mediated by P2X7 Receptor on SGCs in DRG of Rats. Biomed Res Int 2017:7831251. https://doi.org/10.1155/2017/7831251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo L, Ji LD, Cai JJ, Feng M, Zhou M, Hu SP, Xu J, Zhou WH (2018) Microarray Analysis of Long Noncoding RNAs in Female Diabetic Peripheral Neuropathy Patients. Cell Physiol Biochem 46(3):1209–1217

    Article  CAS  PubMed  Google Scholar 

  32. Wu B, Zhang C, Zou L, Ma Y, Huang K, Lv Q, Zhang X, Wang S, Xue Y, Yi Z (2016) LncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats mediated by P2X7 receptor in SCG. Auton Neurosci: S1566070216300340

  33. Hu F, Tong J, Deng B, Zheng J, Lu C (2019) MiR-495 regulates macrophage M1/M2 polarization and insulin resistance in high-fat diet-fed mice via targeting FTO. Pflugers Arch 471(11–12):1529–1537

    Article  CAS  PubMed  Google Scholar 

  34. Feng J, Dong C, Long Y, Mai L, Ren M, Li L, Zhou T, Yang Z, Ma J, Yan L, Yang X, Gao G, Qi W (2019) Elevated Kallikrein-binding protein in diabetes impairs wound healing through inducing macrophage M1 polarization. Cell Commun Signal 17(1):60. https://doi.org/10.1186/s12964-019-0376-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang SM, Wu CS, Chiu MH, Wu CH, Chang YT, Chen GS, Lan CE (2019) High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-alpha: An important mechanism to delay the diabetic wound healing. J Dermatol Sci 96(3):159–167. https://doi.org/10.1016/j.jdermsci.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  36. Gong J, Li J, Dong H, Chen G, Qin X, Hu M, Yuan F, Fang K, Wang D, Jiang S, Zhao Y, Huang W, Huang Z, Lu F (2019) Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88. BMC Complement Altern Med 19(1):314. https://doi.org/10.1186/s12906-019-2710-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493(7432):346–355. https://doi.org/10.1038/nature11862

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Y, Chen S, Lan P, Wu C, Dou Y, Xiao X, Zhang Z, Minze L, He X, Chen W, Li XC (2018) Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. Am J Transplant 18(3):604–616. https://doi.org/10.1111/ajt.14543

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Science Foundation of Health Commission of Shanxi Province (20161004, 201601052, 2018GW26); Scientific Research Foundation for outstanding youth of Shanxi Bethune Hospital (2019YJ09).

Author information

Authors and Affiliations

Authors

Contributions

WR conception and design and analysis of data. WR and GX drafting the article. XL revising the article critically for important intellectual content. LZ contributed to the conception of the study. KY contributed significantly to analysis and manuscript preparation; XF and LG performed the data analyses and wrote the manuscript; HX and JG helped perform the analysis with constructive discussions. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Jianjin Guo.

Ethics declarations

Conflicts of interest

The Authors declare that they have no conflicts of interest to disclose.

Ethics approval

This study was approved by the ethics committee of The Second Clinical Medical College of Shanxi Medical University; The Second Hospital of Shanxi Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Xi, G., Li, X. et al. Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem 476, 471–482 (2021). https://doi.org/10.1007/s11010-020-03923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03923-3

Keywords

Navigation