Skip to main content
Log in

Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress has been related to multiple diseases, especially during early embryonic development, when environmental alterations can lead to long-term deleterious effects. In vitro studies of oxidative stress have been mainly focused on somatic cells, but embryonic stem cells (ESCs) represent a promising model of early embryonic development as they are the in vitro equivalent to pluripotent cells in the embryo. Human fibroblasts and ESCs were exposed to different pro-oxidant agents (hydrogen peroxide, tert-butyl hydroperoxide (TBHP), and rotenone) and antioxidants (sodium pyruvate, N-acetylcysteine, Trolox, and sodium selenite) during a 72 h oxidative stress treatment. Then, cell viability, oxidative stress, mitochondrial activity, and gene expression were analyzed, focusing on the antioxidant effect of pyruvate. Pyruvate protected both somatic and pluripotent cells against different pro-oxidant agents, showing strong ROS scavenging capacity, protecting mitochondrial membrane potential, and regulating gene expression and cell metabolism through different mechanisms in fibroblasts and ESCs. In fibroblasts, pyruvate avoided NFKβ nuclear translocation and the upregulation of genes related to the oxidative stress response, while in ESCs pyruvate stimulated the expression of genes involved in anaerobic glycolysis. Fibroblasts and ESCs reacted in different ways to oxidative stress and antioxidant treatment, and pyruvate was the most complete antioxidant, protecting both cell types at different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48. doi:10.3109/10408449309104073

    Article  CAS  PubMed  Google Scholar 

  2. Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417. doi:10.1111/j.1365-2796.2007.01809.x

    Article  CAS  PubMed  Google Scholar 

  3. Halliwell B (2014) Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J 37:99–105. doi:10.4103/2319-4170.128725

    PubMed  Google Scholar 

  4. Guo YL, Chakraborty S, Rajan SS, Wang R, Huang F (2010) Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev 19:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22:962–971. doi:10.1634/stemcells.22-6-962

    Article  CAS  PubMed  Google Scholar 

  6. Baumeister P, Huebner T, Reiter M, Schwenk-Zieger S, Harreus U (2009) Reduction of oxidative DNA fragmentation by ascorbic acid, zinc and N-acetylcysteine in nasal mucosa tissue cultures. Anticancer Res 29:4571–4574

    CAS  PubMed  Google Scholar 

  7. Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M (2009) Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 11:3071–3109. doi:10.1089/ars.2009.2484

    Article  CAS  PubMed  Google Scholar 

  8. Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24:1226–1235. doi:10.1634/stemcells.2005-0117

    Article  CAS  PubMed  Google Scholar 

  9. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43:4–15. doi:10.1016/j.freeradbiomed.2007.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rushworth GF, Megson IL (2014) Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther 141:150–159. doi:10.1016/j.pharmthera.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  11. Mandl J, Szarka A, Banhegyi G (2009) Vitamin C: update on physiology and pharmacology. Br J Pharmacol 157:1097–1110. doi:10.1111/j.1476-5381.2009.00282.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Babich H, Liebling EJ, Burger RF, Zuckerbraun HL, Schuck AG (2009) Choice of DMEM, formulated with or without pyruvate, plays an important role in assessing the in vitro cytotoxicity of oxidants and prooxidant nutraceuticals. In Vitro Cell Dev Biol Anim 45:226–233. doi:10.1007/s11626-008-9168-z

    Article  CAS  PubMed  Google Scholar 

  13. Kang YH, Chung SJ, Kang IJ, Park JH, Bunger R (2001) Intramitochondrial pyruvate attenuates hydrogen peroxide-induced apoptosis in bovine pulmonary artery endothelium. Mol Cell Biochem 216:37–46

    Article  CAS  PubMed  Google Scholar 

  14. Long LH, Halliwell B (2009) Artefacts in cell culture: pyruvate as a scavenger of hydrogen peroxide generated by ascorbate or epigallocatechin gallate in cell culture media. Biochem Biophys Res Commun 388:700–704. doi:10.1016/j.bbrc.2009.08.069

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH (2007) Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res 1132:1–9. doi:10.1016/j.brainres.2006.11.032

    Article  CAS  PubMed  Google Scholar 

  16. Lee YJ, Kang IJ, Bunger R, Kang YH (2003) Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells. Microvasc Res 66:91–101

    Article  CAS  PubMed  Google Scholar 

  17. Tejero-Taldo MI, Caffrey JL, Sun J, Mallet RT (1999) Antioxidant properties of pyruvate mediate its potentiation of beta-adrenergic inotropism in stunned myocardium. J Mol Cell Cardiol 31:1863–1872. doi:10.1006/jmcc.1999.1020

    Article  CAS  PubMed  Google Scholar 

  18. Alia M, Ramos S, Mateos R, Bravo L, Goya L (2005) Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol 19:119–128. doi:10.1002/jbt.20061

    Article  CAS  PubMed  Google Scholar 

  19. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  PubMed  Google Scholar 

  20. Davies MJ (1989) Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. Biochem J 257:603–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guidarelli A, Cattabeni F, Cantoni O (1997) Alternative mechanisms for hydroperoxide-induced DNA single strand breakage. Free Radic Res 26:537–547

    Article  CAS  PubMed  Google Scholar 

  22. Kim JA, Kang YS, Kim YO, Lee SH, Lee YS (1998) Role of Ca2+ influx in the tert-butyl hydroperoxide-induced apoptosis of HepG2 human hepatoblastoma cells. Exp Mol Med 30:137–144. doi:10.1038/emm.1998.20

    Article  CAS  PubMed  Google Scholar 

  23. Sestili P, Guidarelli A, Dacha M, Cantoni O (1998) Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: free radical scavenging versus iron chelating mechanism. Free Radic Biol Med 25:196–200

    Article  CAS  PubMed  Google Scholar 

  24. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ (2008) Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab 93:3199–3207. doi:10.1210/jc.2007-2616

    Article  CAS  PubMed  Google Scholar 

  25. Yadava N, Nicholls DG (2007) Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J Neurosci 27:7310–7317. doi:10.1523/jneurosci.0212-07.2007

    Article  CAS  PubMed  Google Scholar 

  26. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356. doi:10.1056/NEJMsr040330

    Article  CAS  PubMed  Google Scholar 

  27. Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Sachinidis A, Lazzari G (2011) Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci, United States pp. 370–377

  28. Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A (2010) Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci USA 107:3394–3399. doi:10.1073/pnas.0913843107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schöne L, Leibniz Institute for Tropospheric Research (TROPOS) L, Germany, Herrmann H and Leibniz Institute for Tropospheric Research (TROPOS) L, Germany (2015) Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions. Atmos Chem Phys 14:4503–4514. doi: 10.5194/acp-14-4503-2014

  30. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866. doi:10.1038/sj.onc.1203239

    Article  CAS  PubMed  Google Scholar 

  31. Zhong W, Oberley TD (2001) Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res 61:7071–7078

    CAS  PubMed  Google Scholar 

  32. Nenadis N, Lazaridou O, Tsimidou MZ (2007) Use of reference compounds in antioxidant activity assessment. J Agric Food Chem 55:5452–5460. doi:10.1021/jf070473q

    Article  CAS  PubMed  Google Scholar 

  33. Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Mol Brain Res Netherlands 13:109–118

  34. Abedinzadeh Z, Arroub J, Gardes-Albert M (2011) On N-acetylcysteine. Part II. Oxidation of N-acetylcysteine by hydrogen peroxide: kinetic study of the overall process. Can J Chem 72:2102–2107. doi:10.1139/v94-267

    Article  Google Scholar 

  35. Herz H, Blake DR, Grootveld M (1997) Multicomponent investigations of the hydrogen peroxide- and hydroxyl radical-scavenging antioxidant capacities of biofluids: the roles of endogenous pyruvate and lactate. Relevance to inflammatory joint diseases. Free Radic Res 26:19–35

    Article  CAS  PubMed  Google Scholar 

  36. Cisowski J, Loboda A, Jozkowicz A, Chen S, Agarwal A, Dulak J (2005) Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis: effect of HO-1 knockout. Biochem Biophys Res Commun 326:670–676. doi:10.1016/j.bbrc.2004.11.083

    Article  CAS  PubMed  Google Scholar 

  37. Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS (1994) Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76:865–873

    Article  CAS  PubMed  Google Scholar 

  38. Lin RY, Vera JC, Chaganti RS, Golde DW (1998) Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J Biol Chem 273:28959–28965

    Article  CAS  PubMed  Google Scholar 

  39. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100. doi:10.1126/science.1218099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nowak G and Bakajsova D (2012) Protein kinase C-alpha activation promotes recovery of mitochondrial function and cell survival following oxidant injury in renal cells. Am J Physiol Renal Physiol 303:F515-26. doi:10.1152/ajprenal.00072.2012

    PubMed  PubMed Central  Google Scholar 

  41. Al-Mehdi AB, Pastukh VM, Swiger BM, Reed DJ, Patel MR, Bardwell GC, Pastukh VV, Alexeyev MF and Gillespie MN (2012) Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci Signal 5:ra47. doi:10.1126/scisignal.2002712

    PubMed  PubMed Central  Google Scholar 

  42. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D (2000) NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 129:77–97

    Article  CAS  PubMed  Google Scholar 

  43. Lee YJ, Kang IJ, Bunger R, Kang YH (2004) Enhanced survival effect of pyruvate correlates MAPK and NF-kappaB activation in hydrogen peroxide-treated human endothelial cells. J Appl Physiol (1985), United States 96:793–801; Discussion 792

  44. Chorley BN, CampBell MR, Wang X, Karaca M, Sambandan D, Bangura F, Xue P, Pi J, Kleeberger SR, Bell DA (2012) Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res 40:7416–7429. doi:10.1093/nar/gks409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banning A, Deubel S, Kluth D, Zhou Z, Brigelius-Flohe R (2005) The GI-GPx gene is a target for Nrf2. Mol Cell Biol 25:4914–4923. doi:10.1128/mcb.25.12.4914-4923.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. George S, Heng BC, Vinoth KJ, Kishen A, Cao T (2009) Comparison of the response of human embryonic stem cells and their differentiated progenies to oxidative stress. Photomed Laser Surg 27:669–674. doi:10.1089/pho.2008.2354

    Article  CAS  PubMed  Google Scholar 

  47. Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L, von Zglinicki T, Lako M (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26:455–464. doi:10.1634/stemcells.2007-0628

    Article  CAS  PubMed  Google Scholar 

  48. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  49. Krisher RL, Prather RS (2012) A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev 79:311–320. doi:10.1002/mrd.22037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hashimoto S, Minami N, Takakura R, Yamada M, Imai H, Kashima N (2000) Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes. Mol Reprod Dev 57:353–360. doi:10.1002/1098-2795(200012)57:4<353::AID-MRD7>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  51. Bermejo-Alvarez P, Lonergan P, Rizos D, Gutierrez-Adan A (2010) Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 20:341–349. doi:10.1016/j.rbmo.2009.12.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HUES3 cells were kindly provided by D. Melton from Harvard Stem Cells Institute under specific Material Transfer Agreement to our colleague Cesare Galli. The technical support of Gabriella Crotti and Paola Turini is greatly acknowledged. This work was supported by EpiHealthNet Marie Curie ITN Project No 317146-FP7-People-2012-ITN and Epihealth Project EU FP7 No 278418. PRI and MB are fellows of the EpiHealthNet project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Ramos-Ibeas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 968 KB)

Supplementary material 2 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Ibeas, P., Barandalla, M., Colleoni, S. et al. Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Mol Cell Biochem 429, 137–150 (2017). https://doi.org/10.1007/s11010-017-2942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2942-z

Keywords

Navigation