Skip to main content

Advertisement

Log in

Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Circulatory arrest (CA) remains a major unresolved public health problem in the United States; the annual incidence of which is ~0.50 to 0.55 per 1000 population. Despite seminal advances in therapeutic approaches over the past several decades, brain injury continues to be the leading cause of morbidity and mortality after CA. In brief, CA typically results in global cerebral ischemia leading to delayed neuronal death in the hippocampal pyramidal cells as well as in the cortical layers. The dynamic changes occurring in neurons after CA are still unclear, and predicting these neurological changes in the brain still remains a difficult issue. It is hypothesized that the “no-flow” period produces a cytotoxic cascade of membrane depolarization, Ca2+ ion influx, glutamate release, acidosis, and resultant activation of lipases, nucleases, and proteases. Furthermore, during reperfusion injury, neuronal death occurs due to the generation of free radicals by interfering with the mitochondrial respiratory chain. The efficacy of many pharmacological agents for CA patients has often been disappointing, reflecting our incomplete understanding of this enigmatic disease. The primary obstacles to the development of a neuroprotective therapy in CA include uncertainties with regard to the precise cause(s) of neuronal dysfunction and what to target. In this review, we summarize our knowledge of the pathophysiology as well as specific cellular changes in brain after CA and revisit the most important neurofunctional, neuroimaging techniques, and serum biomarkers as potent predictors of neurologic outcome in CA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e60

    Article  PubMed  Google Scholar 

  2. Berdowski J, Berg RA, Tijssen JGP, Koster RW (2010) Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 81:1479–1487

    Article  PubMed  Google Scholar 

  3. Girotra G, Nallamothu BK, Spertus JA, Li Y, Krumholz HM, Chan PS (2012) Trends in survival after in-hospital cardiac arrest. N Engl J Med 367:1912–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maramattom BV, Wijdicks EF (2005) Postresuscitation encephalopathy. Current views, management, and prognostication. Neurologist 11:234–243

    Article  PubMed  Google Scholar 

  5. Michenfelder JD, Theye RA (1970) The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33:430–439

    Article  CAS  PubMed  Google Scholar 

  6. Siesjo BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185

    Article  CAS  PubMed  Google Scholar 

  7. Astrup J, Sorensen PM, Sorensen HR (1981) Oxygen and glucose consumption related to Na+-K+transport in canine brain. Stroke 12:726–730

    Article  CAS  PubMed  Google Scholar 

  8. Caroni P, Carafoli E (1981) Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process. J Biol Chem 256:9371–9373

    CAS  PubMed  Google Scholar 

  9. Vaagenes P, Ginsberg M, Ebmeyer U et al (1996) Cerebral resuscitation from cardiac arrest: pathophysiologic mechanisms. Crit Care Med 24:S57–S68

    Article  CAS  PubMed  Google Scholar 

  10. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  CAS  PubMed  Google Scholar 

  11. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  PubMed  Google Scholar 

  12. Erecinska M, Silver IA (1992) Relationship between ions and energy metabolism: cerebral calcium movements during ischaemia and subsequent recovery. Can J Physiol Pharmacol 70(Suppl):S190–S193

    Article  CAS  PubMed  Google Scholar 

  13. Roberts-Lewis JM, Savage MJ, Marcy VR, Pinsker LR, Siman R (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci 14:3934–3944

    CAS  PubMed  Google Scholar 

  14. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ushijima K, Miyazaki H, Morioka T (1986) Immunohistochemical localization of glutathione peroxidase in the brain of the rat. Resuscitation 13:97–105

    Article  CAS  PubMed  Google Scholar 

  16. Zaleska MM, Floyd RA (1985) Regional lipid peroxidation in rat brain in vitro: possible role of endogenous iron. Neurochem Res 10:397–410

    Article  CAS  PubMed  Google Scholar 

  17. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  CAS  PubMed  Google Scholar 

  18. Abe K, Aoki M, Kawagoe J, Yoshida T, Hattori A, Kogure K, Itoyama Y (1995) Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke 26:1478–1489

    Article  CAS  PubMed  Google Scholar 

  19. Cao W, Carney JM, Duchon A, Floyd RA, Chevion M (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88:233–238

    Article  CAS  PubMed  Google Scholar 

  20. Zamzami N, Marchetti P, Castedo M et al (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Article  CAS  PubMed  Google Scholar 

  21. Piantadosi CA, Zhang J (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27:327–331

    Article  CAS  PubMed  Google Scholar 

  22. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  23. Bakhle YS (1983) Synthesis and catabolism of cyclo-oxygenase products. Br Med Bull 39:214–218

    CAS  PubMed  Google Scholar 

  24. Moskowitz N, Schook W, Puszkin S (1984) Regulation of endogenous calcium-dependent synaptic membrane phospholipase A2. Brain Res 290:273–279

    Article  CAS  PubMed  Google Scholar 

  25. Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131

    Article  CAS  PubMed  Google Scholar 

  26. Padosch SA, Popp E, Vogel P, Böttiger BW (2003) Altered protein expression levels of Fas/CD95 and Fas ligand in differentially vulnerable brain areas in rats after global cerebral ischemia. Neurosci Lett 338:247–251

    Article  CAS  PubMed  Google Scholar 

  27. Iadecola C, Zhang F, Xu S, Casey R, Ross ME (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15:378–384

    Article  CAS  PubMed  Google Scholar 

  28. Giulian D, Li J, Leara B, Keenen C (1994) Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 25:227–233

    Article  CAS  PubMed  Google Scholar 

  29. Barone FC, Hillegass LM, Price WJ et al (1991) Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. J Neurosci Res 29:336–345

    Article  CAS  PubMed  Google Scholar 

  30. Adams DH, Shaw S (1994) Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 343:831–836

    Article  CAS  PubMed  Google Scholar 

  31. del Zoppo GJ (1994) Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 6:47–96

    PubMed  Google Scholar 

  32. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030

    Article  CAS  PubMed  Google Scholar 

  33. Smith CW (1993) Endothelial adhesion molecules and their role in inflammation. Can J Physiol Pharmacol 71:76–87

    Article  CAS  PubMed  Google Scholar 

  34. Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, Dávalos A (2003) Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke 34:40–46

    Article  CAS  PubMed  Google Scholar 

  35. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559

    Article  CAS  PubMed  Google Scholar 

  36. Klatzo I (1967) Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26:1–14

    Article  CAS  PubMed  Google Scholar 

  37. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  CAS  PubMed  Google Scholar 

  38. Chan PH, Schmidley JW, Fishman RA, Longar SM (1984) Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34:315–320

    Article  CAS  PubMed  Google Scholar 

  39. Mun-Bryce S, Rosenberg GA (1998) Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 18:1163–1172

    Article  CAS  PubMed  Google Scholar 

  40. Mayhan WG, Didion SP (1996) Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide. Stroke 27:965–969

    Article  CAS  PubMed  Google Scholar 

  41. Sampaolo S, Nakagawa Y, Iannotti F, Cervos-Navarro J, Bonavita V (1991) Blood-brain barrier permeability to micromolecules and edema formation in the early phase of incomplete continuous ischemia. Acta Neuropathol 82:107–111

    Article  CAS  PubMed  Google Scholar 

  42. Chalkias A, Xanthos T (2012) Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail Rev 17:117–128

    Article  PubMed  Google Scholar 

  43. Ibáñez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471

    Article  PubMed  Google Scholar 

  44. Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B (2015) Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care 19:175

    Article  PubMed  PubMed Central  Google Scholar 

  45. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154

    Article  PubMed  Google Scholar 

  46. Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S (2014) Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care 29:500–511

    Article  PubMed  Google Scholar 

  47. Omar S, Zedan A, Nugent K (2015) Cardiac vasoplegia syndrome: pathophysiology, risk factors and treatment. Am J Med Sci 349:80–88

    Article  PubMed  Google Scholar 

  48. Geppert A, Zorn G, Karth GD et al (2000) Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit Care Med 28:2360–2365

    Article  CAS  PubMed  Google Scholar 

  49. Boland TA, Lee VH, Bleck TP (2015) Stress-induced cardiomyopathy. Crit Care Med 43:686–693

    Article  CAS  PubMed  Google Scholar 

  50. Paur H, Wright PT, Sikkel MB et al (2012) High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 126:697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petito CK, Pulsinelli WA (1984) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 4:194–205

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto K, Morimoto K, Yanagihara T (1986) Cerebral ischemia in the gerbil: transmission electron microscopic and immunoelectron microscopic investigation. Brain Res 384:1–10

    Article  CAS  PubMed  Google Scholar 

  53. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt-Kastner R, Hossmann KA (1988) Distribution of ischemic neuronal damage in the dorsal hippocampus of rat. Acta Neuropathol 76:411–421

    Article  CAS  PubMed  Google Scholar 

  55. Ito U, Spatz M, Walker JT Jr, Klatzo I (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol 32:209–223

    Article  CAS  PubMed  Google Scholar 

  56. Hashimoto K, Kikuchi H, Ishikawa M, Kobayashi S (1992) Changes in cerebral energy metabolism and calcium levels in relation to delayed neuronal death after ischemia. Neurosci Lett 137:165–168

    Article  CAS  PubMed  Google Scholar 

  57. Fujioka M, Okuchi K, Sakaki T, Hiramatsu K, Miyamoto S, Iwasaki S (1994) Specific changes in human brain following reperfusion after cardiac arrest. Stroke 25:2091–2095

    Article  CAS  PubMed  Google Scholar 

  58. Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298

    Article  PubMed  Google Scholar 

  59. Klatzo I, Chui E, Fujiwara K, Spatz M (1980) Resolution of vasogenic brain edema. Adv Neurol 28:359–373

    CAS  PubMed  Google Scholar 

  60. Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10:1583–1591

    CAS  PubMed  Google Scholar 

  61. Petito CK, Olarte JP, Roberts B, Nowak TS Jr, Pulsinelli WA (1998) Selective glial vulnerability following transient global ischemia in rat brain. J Neuropathol Exp Neurol 57:231–238

    Article  CAS  PubMed  Google Scholar 

  62. Petito CK (1986) Transformation of postischemic perineuronal glial cells. I. Electron microscopic studies. J Cereb Blood Flow Metab 6:616–624

    Article  CAS  PubMed  Google Scholar 

  63. Uchihara T, Tsuchiya K, Nakamura A, Ikeda K (2000) Appearance of tau-2 immunoreactivity in glial cells in human brain with cerebral infarction. Neurosci Lett 286:99–102

    Article  CAS  PubMed  Google Scholar 

  64. Valeriani V, Dewar D, McCulloch J (2000) Quantitative assessment of ischemic pathology in axons, oligodendrocytes, and neurons: attenuation of damage after transient ischemia. J Cereb Blood Flow Metab 20:765–771

    Article  CAS  PubMed  Google Scholar 

  65. Roine RO, Somer H, Kaste M, Viinikka L, Karonen SL (1989) Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch Neurol 46:753–756

    Article  CAS  PubMed  Google Scholar 

  66. Martens P, Raabe A, Johnsson P (1998) Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke 29:2363–2366

    Article  CAS  PubMed  Google Scholar 

  67. Tiainen M, Roine RO, Pettilä V, Takkunen O (2003) Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke 34:2881–2886

    Article  CAS  PubMed  Google Scholar 

  68. Meynaar IA, Oudemans-van Straaten HM, van der Wetering J et al (2003) Serum neuron-specific enolase predicts outcome in post-anoxic coma: a prospective cohort study. Intensive Care Med 29:189–195

    Article  PubMed  Google Scholar 

  69. Rosen H, Sunnerhagen KS, Herlitz J et al (2001) Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation 49:183–191

    Article  CAS  PubMed  Google Scholar 

  70. Dauberschmidt R, Zinsmeyer J, Mrochen H, Meyer M (1991) Changes of neuron-specific enolase concentration in plasma after cardiac arrest and resuscitation. Mol Chem Neuropathol 14:237–245

    Article  CAS  PubMed  Google Scholar 

  71. Fogel W, Vieira SR, Nagel F, Brauner JS, Scalco R (1997) Serum neuron-specific enolase as early predictor of outcome after cardiac arrest. Crit Care Med 25:1133–1138

    Article  CAS  PubMed  Google Scholar 

  72. Bottiger BW, Mobes S, Glätzer R, Bauer H, Gries A, Bärtsch P, Motsch J, Martin E (2001) Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 103:2694–2698

    Article  CAS  PubMed  Google Scholar 

  73. Schoerkhuber W, Kittler H, Sterz F, Behringer W, Holzer M, Frossard M, Spitzauer S, Laggner AN (1999) Time course of serum neuron-specific enolase. A predictor of neurological outcome in patients resuscitated from cardiac arrest. Stroke 30:1598–1603

    Article  CAS  PubMed  Google Scholar 

  74. Marangos PJ, Campbell IC, Schmechel DE, Murphy DL, Goodwin FK (1980) Blood platelets contain a neuron-specific enolase subunit. J Neurochem 34:1254–1258

    Article  CAS  PubMed  Google Scholar 

  75. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S (2006) Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology. Neurology 67:203–210

    Article  CAS  PubMed  Google Scholar 

  76. Reisinger J, Höllinger K, Lang W et al (2007) Prediction of neurological outcome after cardiopulmonary resuscitation by serial determination of serum neuron-specific enolase. Eur Heart J 28:52–58

    Article  CAS  PubMed  Google Scholar 

  77. Rosen H, Rosengren L, Herlitz J, Blomstrand C (1998) Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Stroke 29:473–477

    Article  CAS  PubMed  Google Scholar 

  78. Mussack T, Biberthaler P, Kanz KG, Wiedemann E, Gippner-Steppert C (2001) Jochum M (2001) S-100b, sE-selectin, and sP-selectin for evaluation of hypoxic brain damage in patients after cardiopulmonary resuscitation: pilot study. World J Surg 25:539–543

    Article  CAS  PubMed  Google Scholar 

  79. Hachimi-Idrissi S, Van der Auwera M, Schiettecatte J, Ebinger G, Michotte Y, Huyghens L (2002) S-100 protein as early predictor of regaining consciousness after out of hospital cardiac arrest. Resuscitation 53:251–257

    Article  CAS  PubMed  Google Scholar 

  80. Zingler VC, Krumm B, Bertsch T, Fassbender K, Pohlmann-Eden B (2003) Early prediction of neurological outcome after cardiopulmonary resuscitation: a multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest. Eur Neurol 49:79–84

    Article  PubMed  Google Scholar 

  81. Mussack T, Biberthaler P, Kanz KG, Wiedemann E, Gippner-Steppert C, Mutschler W, Jochum M (2002) Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit Care Med 30:2669–2674

    Article  CAS  PubMed  Google Scholar 

  82. Young GB (2000) The EEG in coma. J Clin Neurophysiol 17:473–485

    Article  CAS  PubMed  Google Scholar 

  83. Jorgensen EO, Holm S (1998) The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation 36:111–122

    Article  CAS  PubMed  Google Scholar 

  84. Hirsch LJ, LaRoche SM, Gaspard N et al (2013) American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2012 version. J Clin Neurophysiol 30:1–27

    Article  CAS  PubMed  Google Scholar 

  85. Zandbergen EG, Hijdra A, Koelman JH, Hart AA, Vos PE, Verbeek MM, de Haan RJ, PROPAC Study Group (2006) Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology 66:62–68

    Article  CAS  PubMed  Google Scholar 

  86. Young GB, Doig G, Ragazzoni A (2005) Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care 2:159–164

    Article  PubMed  Google Scholar 

  87. Rossetti AO, Carrera E, Oddo M (2012) Early EEG correlates of neuronal injury after brain anoxia. Neurology 78:796–802

    Article  CAS  PubMed  Google Scholar 

  88. Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ (2012) Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med 40:2867–2875

    Article  PubMed  Google Scholar 

  89. Kawai M, Thapalia U, Verma A (2011) Outcome from therapeutic hypothermia and EEG. J Clin Neurophysiol 28:483–488

    PubMed  Google Scholar 

  90. Rundgren M, Westhall E, Cronberg T, Rosén I, Friberg H (2010) Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med 38:1838–1844

    Article  PubMed  Google Scholar 

  91. Oh SH, Park KN, Kim YM, Kim HJ, Youn CS, Kim SH, Choi SP, Kim SC, Shon YM (2013) The prognostic value of continuous amplitude-integrated electroencephalogram applied immediately after return of spontaneous circulation in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation 84:200–205

    Article  PubMed  Google Scholar 

  92. Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A (1998) Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 352:1808–1812

    Article  CAS  PubMed  Google Scholar 

  93. Jorgensen EO, Malchow-Moller A (1981) Natural history of global and critical brain ischaemia. Part II: EEG and neurological signs in patients remaining unconscious after cardiopulmonary resuscitation. Resuscitation 9:155–174

    Article  CAS  PubMed  Google Scholar 

  94. Sorensen K, Thomassen A, Wernberg M (1978) Prognostic significance of alpha frequency EEG rhythm in coma after cardiac arrest. J Neurol Neurosurg Psychiatry 41:840–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaplan PW, Genoud D, Ho TW, Jallon P (1999) Etiology, neurologic correlations, and prognosis in alpha coma. Clin Neurophysiol 110:205–213

    Article  CAS  PubMed  Google Scholar 

  96. Ahmed I (1988) Use of somatosensory evoked responses in the prediction of outcome from coma. Clin EEG Neurosci 19:78–86

    Article  CAS  Google Scholar 

  97. Bassetti C, Bomio F, Mathis J, Hess CW (1996) Early prognosis in coma after cardiac arrest: a prospective clinical, electrophysiological, and biochemical study of 60 patients. J Neurol Neurosurg Psychiatry 61:610–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rothstein TL (2000) The role of evoked potentials in anoxic-ischemic coma and severe brain trauma. J Clin Neurophysiol 17:486–497

    Article  CAS  PubMed  Google Scholar 

  99. Zandbergen EG, de Haan RJ, Koelman JH, Hijdra A (2000) Prediction of poor outcome in anoxic-ischemic coma. J Clin Neurophysiol 17:498–501

    Article  CAS  PubMed  Google Scholar 

  100. Stelzl T, von Bose MJ, Hogl B, Fuchs HH, Flugel KA (1995) A comparison of the prognostic value of neuron-specific enolase serum levels and somatosensory evoked potentials in 13 reanimated patients. Eur J Emerg Med 2:24–27

    Article  CAS  PubMed  Google Scholar 

  101. Tiainen M, Kovala TT, Takkunen OS, Roine RO (2005) Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia. Crit Care Med 33:1736–1740

    Article  PubMed  Google Scholar 

  102. Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL (2003) Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med 31:960–967

    Article  PubMed  Google Scholar 

  103. Madl C, Grimm G, Kramer L et al (1993) Early prediction of individual outcome after cardiopulmonary resuscitation. Lancet 341:855–858

    Article  CAS  PubMed  Google Scholar 

  104. Castillo M (1998) Imaging of cerebral infarction. Curr Probl Diagn Radiol 27:105–131

    Article  CAS  PubMed  Google Scholar 

  105. Kjos BO, Brant-Zawadzki M, Young RG (1983) Early CT findings of global central nervous system hypoperfusion. Am J Roentgenol 141:1227–1232

    Article  CAS  Google Scholar 

  106. Bell BA, Symon L, Branston NM (1985) CBF and time thresholds for the formation of ischemic cerebral edema, and effect of reperfusion in baboons. J Neurosurg 62:31–41

    Article  CAS  PubMed  Google Scholar 

  107. Hatashita S, Hoff JT (1986) Cortical tissue pressure gradients in early ischemic brain edema. J Cereb Blood Flow Metab 6:1–7

    Article  CAS  PubMed  Google Scholar 

  108. Torbey MT, Selim M, Knorr J, Bigelow C, Recht L (2000) Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke 31:2163–2167

    Article  CAS  PubMed  Google Scholar 

  109. Hoeffner EG, Case I, Jain R et al (2004) Cerebral perfusion CT: technique and clinical applications. Radiology 231:632–644

    Article  PubMed  Google Scholar 

  110. Gupta A, Chazen JL, Hartman M et al (2012) Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis. Stroke 43:2884–2891

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schoof J, Lubahn W, Baeumer M, Kross R, Wallesch CW, Kozian A, Huth C, Goertler M (2007) Impaired cerebral autoregulation distal to carotid stenosis/occlusion is associated with increased risk of stroke at cardiac surgery with cardiopulmonary bypass. J Thorac Cardiovasc Surg 134:690–696

    Article  PubMed  Google Scholar 

  112. Gonzalez RG, Schaefer PW, Buonanno FS et al (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162

    Article  CAS  PubMed  Google Scholar 

  113. Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 142:623–635

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Arbelaez A, Castillo M, Mukherji SK (1999) Diffusion-weighted MR imaging of global cerebral anoxia. Am J Neuroradiol 20:999–1007

    CAS  PubMed  Google Scholar 

  115. Rivkin MJ, Volpe JJ (1993) Hypoxic-ischemic brain injury in the newborn. Semin Neurol 13:30–39

    Article  CAS  PubMed  Google Scholar 

  116. Sontheimer H, Kettenmann H, Backus KH, Schachner M (1988) Glutamate opens Na+/K+channels in cultured astrocytes. Glia 1:328–336

    Article  CAS  PubMed  Google Scholar 

  117. Hossmann KA, Hoehn-Berlage M (1995) Diffusion and perfusion MR imaging of cerebral ischemia. Cerebrovasc Brain Metab Rev 7:187–217

    CAS  PubMed  Google Scholar 

  118. Kuhn MJ, Mikulis DJ, Ayoub DM, Kosofsky BE, Davis KR, Taveras JM (1989) Wallerian degeneration after cerebral infarction: evaluation with sequential MR imaging. Radiology 172:179–182

    Article  CAS  PubMed  Google Scholar 

  119. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    Article  CAS  PubMed  Google Scholar 

  120. Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Loubinoux I, Volk A, Borredon J, Guirimand S, Tiffon B, Seylaz J, Méric P (1997) Spreading of vasogenic edema and cytotoxic edema assessed by quantitative diffusion and T2 magnetic resonance imaging. Stroke 28:419–426

    Article  CAS  PubMed  Google Scholar 

  122. Wu O, Sorensen AG, Benner T, Singhal AB, Furie KL, Greer DM (2009) Comatose patients with cardiac arrest: predicting clinical outcome with diffusion-weighted MR imaging. Radiology 252:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dani KA, Warach S (2014) Metabolic imaging of ischemic stroke: the present and future. Am J Neuroradiol 35:S37–S43

    Article  CAS  PubMed  Google Scholar 

  124. Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  125. Nielsen N, Wetterslev J, Cronberg T et al (2013) Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med 369:2197–2206

    Article  CAS  PubMed  Google Scholar 

  126. Callaway CW, Donnino MW, Fink EL et al (2015) Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132:S465–S482

    Article  PubMed  PubMed Central  Google Scholar 

  127. Harada K, Maekawa T, Tsuruta R, Kaneko T, Sadamitsu D, Yamashima T, Yoshida Ki K (2002) Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion. J Neurosci Res 67:664–669

    Article  CAS  PubMed  Google Scholar 

  128. Fukuda H, Tomimatsu T, Watanabe N et al (2001) Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia. Brain Res 910:187–191

    Article  CAS  PubMed  Google Scholar 

  129. Lei B, Adachi N, Arai T (1997) The effect of hypothermia on H2O2 production during ischemia and reperfusion: a microdialysis study in the gerbil hippocampus. Neurosci Lett 222:91–94

    Article  CAS  PubMed  Google Scholar 

  130. Kumar K, Evans AT (1997) Effect of hypothermia on microglial reaction in ischemic brain. Neuroreport 8:947–950

    Article  CAS  PubMed  Google Scholar 

  131. Inamasu J, Suga S, Sato S, Horiguchi T, Akaji K, Mayanagi K, Kawase T (2001) Intra-ischemic hypothermia attenuates intercellular adhesion molecule-1 (ICAM-1) and migration of neutrophil. Neurol Res 23:105–111

    Article  CAS  PubMed  Google Scholar 

  132. Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA (2002) Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience 114:1081–1090

    Article  CAS  PubMed  Google Scholar 

  133. Gajarski RJ, Smitko K, Despres R, Meden J, Hutton DW (2015) Cost-effectiveness analysis of alternative cooling strategies following cardiac arrest. Springerplus 4:427

    Article  PubMed  PubMed Central  Google Scholar 

  134. Merchant RM, Becker LB, Abella BS, Asch DA, Groeneveld PW (2009) Cost-effectiveness of therapeutic hypothermia after cardiac arrest. Circ Cardiovasc Qual Outcomes 2:421–428

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Sanganalmath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanganalmath, S.K., Gopal, P., Parker, J.R. et al. Global cerebral ischemia due to circulatory arrest: insights into cellular pathophysiology and diagnostic modalities. Mol Cell Biochem 426, 111–127 (2017). https://doi.org/10.1007/s11010-016-2885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2885-9

Keywords

Navigation