Skip to main content
Log in

Hyperglycemia reduces integrin subunits alpha v and alpha 5 on the surface of dermal fibroblasts contributing to deficient migration

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Deficient wound healing is a common multifactorial complication in diabetic patients, but the cellular and molecular mechanisms involved are poorly defined. In the present study, we analyzed the effects of hyperglycemia on integrins expression in rat dermal fibroblasts and addressed its role in cell adhesion and migration. Diabetes Mellitus was induced in rats by streptozotocin injection and maintained for 30 days. Primary cultures of dermal fibroblasts from control and diabetic rats were maintained under low glucose (5 mM d-glucose) or high glucose (30 mM d-glucose) for 7 days. Cell adhesion and migration were studied by kymography, transwell, and time-lapse assays, and the expressions of integrin subunits αv and α5 were studied by immunocytochemistry and western blotting. Fibroblasts derived from diabetic rats confirmed a reduced migration speed and delayed spreading compared to fibroblasts derived from control rats. The membrane fraction of diabetic-derived fibroblasts showed a decrease of integrin subunits α5 and αv, which was confirmed by immunocytochemistry assays. A reduction in the pericellular fibronectin matrix was also observed. The exposure of diabetic-derived cells to a higher concentration of exogenous fibronectin improved migration velocity and the expression of αv but did not completely restore their migration capacity. In conclusion, the mechanisms involved in the deleterious effects of Diabetes Mellitus on wound healing include the ability of fibroblasts to secrete and to adhere to fibronectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. doi:10.1161/CIRCRESAHA.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709. doi:10.1126/science.1092053

    Article  CAS  PubMed  Google Scholar 

  3. Labat-Robert J (2012) Cell-Matrix interactions, the role of fibronectin and integrins. A survey. Pathol Biol 60:15–19. doi:10.1016/j.patbio.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  4. Schwarzbauer JE, DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a005041

    PubMed  PubMed Central  Google Scholar 

  5. Bretscher MS (1989) Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J 8:1341–1348

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Caswell PT, Norman JC (2006) Integrin trafficking and the control of cell migration. Traffic 7:14–21. doi:10.1111/j.1600-0854.2005.00362.x

    Article  CAS  PubMed  Google Scholar 

  7. Wiesner S, Legate KR, Fässler R (2005) Integrin-actin interactions. Cell Mol Life Sci 62:1081–1099. doi:10.1007/s00018-005-4522-8

    Article  CAS  PubMed  Google Scholar 

  8. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280. doi:10.1007/s00441-009-0834-6

    Article  CAS  PubMed  Google Scholar 

  9. Loot MA, Kenter SB, Au FL, van Galen WJ, Middelkoop E, Bos JD, Mekkes JR (2002) Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol 81:153–160

    Article  PubMed  Google Scholar 

  10. Loots MA, Lamme EN, Mekkes JR, Bos JD, Middelkoop E (1999) Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res 291:93–99

    Article  CAS  PubMed  Google Scholar 

  11. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC (2003) Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol 162:303–312. doi:10.1016/S0002-9440(10)63821-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xuan YH, Huang BB, Tian HS, Chi LS, Duan YM, Wang X, Zhu ZX, Cai WH, Zhu YT, Wei TM, Ye HB, Cong WT, Jin LT (2014) High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS One 9:e108182. doi:10.1371/journal.pone.0108182

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lamers ML, Almeida MES, Vicente-Manzanares M, Horwitz AF, Santos MF (2011) High glucose-mediated oxidative stress impairs cell migration. PLoS One 6:9. doi:10.1371/journal.pone.0022865

    Google Scholar 

  14. Maria SS, Wada ML (1997) Cytochemical analysis of Vero cells on type I collagen gels in long-term culture. In Vitro Cell Dev Biol Anim 33:748–750

    Article  CAS  PubMed  Google Scholar 

  15. Hinz B, Alt W, Johnen C, Herzog V, Kaiser HW (1999) Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp Cell Res 251:234–243. doi:10.1006/excr.1999.4541

    Article  CAS  PubMed  Google Scholar 

  16. Santos MF, Viar MJ, McCormack SA, Johnson LR (1997) Polyamines are important for attachment of IEC-6 cells to extracellular matrix. Am J Physiol 273:G175–G183

    CAS  PubMed  Google Scholar 

  17. Huveneers S, Truong H, Fässler R, Sonnenberg A, Danen EH (2008) Binding of soluble fibronectin to integrin alpha5 beta1—link to focal adhesion redistribution and contractile shape. J Cell Sci 121:2452–2462. doi:10.1242/jcs.033001

    Article  CAS  PubMed  Google Scholar 

  18. Borm B, Requardt RP, Herzog V, Kirfel G (2005) Membrane ruffles in cell migration: indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp Cell Res 302:83–95. doi:10.1016/j.yexcr.2004.08.034

    Article  CAS  PubMed  Google Scholar 

  19. Goldfinger LE, Han J, Kiosses WB, Howe AK, Ginsberg MH (2003) Spatial restriction of alpha4 integrin phosphorylation regulates lamellipodial stability and alpha4beta1-dependent cell migration. J Cell Biol 162:731–741. doi:10.1083/jcb.200304031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Owen KA, Pixley FJ, Thomas KS, Vicente-Manzanares M, Ray BJ, Horwitz AF, Parsons JT, Beggs HE, Stanley ER, Bouton AH (2007) Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase. J Cell Biol 179:1275–1287. doi:10.1083/jcb.200708093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kitsiou PV, Tzinia AK, Stetler-Stevenson WG, Michael AF, Fan WW, Zhou B, Tsilibary EC (2003) Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells. Am J Physiol Renal Physiol 284:F671–F679. doi:10.1152/ajprenal.00266.2002

    Article  CAS  PubMed  Google Scholar 

  22. Regoli M, Bendayan M (1999) Expression of beta1 integrins in glomerular tissue of Streptozotocin-induced diabetic rats. Biochem Cell Biol 77:71–78

    Article  CAS  PubMed  Google Scholar 

  23. Zhu P, Yang C, Chen LH, Ren M, Lao GJ, Yan L (2011) Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA. Arch Dermatol Res 303:339–350. doi:10.1007/s00403-010-1102-z

    Article  CAS  PubMed  Google Scholar 

  24. Liao H, Zakhaleva J, Chen W (2009) Cells and tissue interactions with glycated collagen and their relevance to delayed diabetic wound healing. Biomaterials 30:1689–1696. doi:10.1016/j.biomaterials.2008.11.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niu Y, Xie T, Ge K, Lin Y, Lu S (2008) Effects of extracellular matrix glycosylation on proliferation and apoptosis of human dermal fibroblasts via the receptor for advanced glycosylated end products. Am J Dermatopathol 30:344–351. doi:10.1097/DAD.0b013e31816a8c5b

    Article  PubMed  Google Scholar 

  26. Miller CG, Pozzi A, Zent R, Schwarzbauer JE (2014) Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells. Mol Biol Cell 25:2342–2350. doi:10.1091/mbc.E14-03-0800

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sung BH, Zhu X, Kaverina I, Weaver AM (2011) Cortactin controls cell motility and lamellipodial dynamics by regulating ECM secretion. Curr Biol 21:1460–1469. doi:10.1016/j.cub.2011.06.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the excellent technical assistance from Gabriella Malheiros. We also thank the technical support of Mario Cruz, from CEFAP-USP for confocal microscopy and Henrique Rofatto from Butantan Institute, São Paulo, Brazil.

Funding

FAPESP (2012/15963-6; 2012/03990-9), CNPq (448052/2014-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinilce F. Santos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.E.S., Monteiro, K.S., Kato, E.E. et al. Hyperglycemia reduces integrin subunits alpha v and alpha 5 on the surface of dermal fibroblasts contributing to deficient migration. Mol Cell Biochem 421, 19–28 (2016). https://doi.org/10.1007/s11010-016-2780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2780-4

Keywords

Navigation