Skip to main content

Impact of the Diabetic State on Wound Healing Dynamics and Expression of Soluble Cellular Mediators

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

Diabetes mellitus impacts virtually every organ system of the body due to the influence that altered glucose metabolism imparts on cellular physiology and because of the effect chronic hyperglycemia can have on protein glycosylation states. As a physiological process involving multiple cell types, biomolecules, and a requirement for cell activation and activity, wound healing processes from formation of a transitional extracellular matrix after tissue destruction to altered neutrophil activation to a reduction in effective mesenchymal cell function have all been shown to be impacted by diabetes. In this chapter, we will review numerous studies that have documented changes in different components of classic dermal wound healing due to chronic hyperglycemia producing an overall diminished capacity to heal tissues and to even lead to the formation of ulcerations. Lastly, we will briefly discuss recent findings from our own studies that suggest that the diabetic state may alter the ability of fibroblasts to respond to activation stimuli with the appropriate expression of pro-inflammatory mediators. This aberrant expression could ultimately lead to an over-recruitment of neutrophils and/or monocyte/macrophages leading to a failure to heal a wound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

bFGF:

Basic fibroblast growth factor

CCR:

CC chemokine receptor

CXCR:

CXC chemokine receptor

ECM:

Extracellular matrix

HIF-1α:

Hypoxia-inducible factor-1α

IL:

Interleukin

LPS:

Lipopolysaccharide

MCP-1:

Monocyte chemoattractant protein-1

MMP:

Matrix metalloproteinase

NO:

Nitric oxide

PDGF:

Platelet-derived growth factor

TGFβ:

Transforming growth factor-β

TIMP:

Tissue inhibitor of matrix metalloproteinase

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor-α

References

  1. Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.

    CAS  PubMed  Google Scholar 

  2. Undas A, Ariës RAS. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Int J Biochem Cell Biol. 2012;44:1800–12.

    Article  Google Scholar 

  3. Jaleel A, Halvatsiotis P, Williamson B, et al. Identification of Amadori-modified plasma proteins in type 2 diabetes and the effect of short-term intensive insulin treatment. Diabetes Care. 2005;28:645–52.

    Article  CAS  PubMed  Google Scholar 

  4. Dunn EJ, Philippou H, Ariës RA, et al. Molecular mechanisms involved in the resistance of fibrin clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia. 2006;49:1071–80.

    Article  CAS  PubMed  Google Scholar 

  5. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J. 1994;8:504–12.

    CAS  PubMed  Google Scholar 

  6. Tedder TF, Steeber DA, Chen A, et al. The selectins: vascular adhesion molecules. FASEB J. 1995;9:866–73.

    CAS  PubMed  Google Scholar 

  7. Soehnlein O, Zernecke A, Weber C. Neutrophils launch monocyte extravasation by release of granule proteins. Thromb Haemost. 2009;102:198–205.

    CAS  PubMed  Google Scholar 

  8. Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26:259–65.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen KT, Seth AK, Hong SJ, et al. Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds. Wound Repair Regen. 2013;21:833–41.

    Article  PubMed  Google Scholar 

  10. Kaplanski G, Marin V, Montero-Julian F, et al. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24:25–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ross R, Odland G. Human wound repair. II. Inflammatory cells, epithelial-mesenchymal interrelations, and fibrogenesis. J Cell Biol. 1968;39:152–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luscinskas FW, Kansas GS, Ding H, et al. Monocyte rolling, arrest and spreading on IL-4-activated vascular endothelium under flow is mediated via sequential action of L-selectin, beta 1-integrins, and beta 2-integrins. J Cell Biol. 1994;125:1417–27.

    Article  CAS  PubMed  Google Scholar 

  13. Deonarine K, Panelli MC, Stashower ME, et al. Gene expression profiling of cutaneous wound healing. J Transl Med. 2007;5:11. doi:10.1186/1479-5876-5-11.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care. 2012;1:10–6.

    Article  Google Scholar 

  15. Nagorsen D, Deola S, Smith K, et al. Polarized monocyte response to cytokine stimulation. Genome Biol. 2005;6:R15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:1–22.

    Article  CAS  Google Scholar 

  17. Katz S, Klein B, Elian I, et al. Phagocytotic activity of monocytes from diabetic patients. Diabetes Care. 1983;6:479–82.

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama K, Asai J, Ii M, et al. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007;170:1178–91.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zykova SN, Jenssen TG, Berdal M, et al. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes. 2000;49:1451–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wetzler C, Kampfer H, Stallmeyer B, et al. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol. 2000;115:245–53.

    Article  CAS  PubMed  Google Scholar 

  21. Bucala R, Spiegel LA, Chesney J, et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mori L, Bellini A, Stacey MA, et al. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res. 2005;304:81–90.

    Article  CAS  PubMed  Google Scholar 

  23. Abe R, Donnelly SC, Peng T, et al. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001;166:7556–62.

    Article  CAS  PubMed  Google Scholar 

  24. Ekert JE, Murray LA, Das AM, et al. Chemokine (C-C motif) ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes. Fibrogenesis Tissue Repair. 2011;4:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krawczyk WS. A pattern of epidermal cell migration during wound healing. J Cell Biol. 1971;49:247–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Braiman-Wiksman L, Solomonik I, Spira R, et al. Novel insights into wound healing sequence of events. Toxicol Pathol. 2007;35:767–79.

    Article  PubMed  Google Scholar 

  27. Coulombe PA. Wound epithelialization: accelerationg the pace of discovery. J Invest Dermatol. 2003;121:219–30.

    Article  CAS  PubMed  Google Scholar 

  28. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  CAS  PubMed  Google Scholar 

  29. Lan CCE, Liu IH, Fang AH, et al. Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes. Br J Dermatol. 2008;159:1103–15.

    CAS  PubMed  Google Scholar 

  30. Huang SM, Wu CS, Chao D, et al. High-glucose-cultivated peripheral blood mononuclear cells impaired keratinocyte function via reduced IL-22 expression: implications on impaired diabetic wound healing. Exp Dermatol. 2015;24:639–41.

    Article  CAS  PubMed  Google Scholar 

  31. Welch MP, Odland GF, Clark RAF. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol. 1990;110:133–45.

    Article  CAS  PubMed  Google Scholar 

  32. Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007;257:143–79.

    Article  CAS  PubMed  Google Scholar 

  33. Ramasastry SS. Acute wounds. Clin Plast Surg. 2005;32:195–208.

    Article  PubMed  Google Scholar 

  34. Fowlkes V, Clark J, Fix C, et al. Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sci. 2013;92:669–76.

    Article  CAS  PubMed  Google Scholar 

  35. Tonnesen MG, Feng X, Clark RAF. Angiogenesis in wound healing. J Invest Dermatol Symp Proc. 2000;5:40–6.

    Google Scholar 

  36. McClain SA, Simon M, Jones E, et al. Mesenchymal cell activation is the rate-limiting step of granulation tissue induction. Am J Pathol. 1996;149:1257–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lingen MW. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med. 2001;125:67–71.

    CAS  PubMed  Google Scholar 

  38. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO. 1999;18:3964–72.

    Article  CAS  Google Scholar 

  39. Lingen MW. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med. 2001;125:67–71.

    CAS  PubMed  Google Scholar 

  40. Goddard LM, Luisa Iruela-Arispe M. Cellular and molecular regulation of vascular permeability. Thromb Haemost. 2013;109:407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.

    Article  CAS  PubMed  Google Scholar 

  42. Thangarajah H, Yao D, Chang EI, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009;106:13505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45:1449–57.

    Article  CAS  PubMed  Google Scholar 

  44. Walzog B, Jeblonski F, Zakrzewicz A, et al. Promote apoptosis of human. FASEB J. 1997;11:1177–86.

    CAS  PubMed  Google Scholar 

  45. Petreaca ML, Yao M, Ware C, et al. Vascular endothelial growth factor promotes macrophage apoptosis through stimulation of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT). Wound Repair Regen. 2008;16:602–14.

    Article  PubMed  Google Scholar 

  46. Grinnell F, Zhu M, Carlson MA, et al. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res. 1999;248:608–19.

    Article  CAS  PubMed  Google Scholar 

  47. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitchell S, Thomas G, Harvey K, et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol. 2002;13:2497–507.

    Article  CAS  PubMed  Google Scholar 

  49. Godson C, Mitchell S, Harvey K, et al. Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol. 2000;164:1663–7.

    Google Scholar 

  50. Herrera BS, Hasturk H, Kantarci A, et al. Impact of resolvin E1 on murine neutrophil phagocytosis in type 2 diabetes. Infect Immun. 2015;83:792–801.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dangwal S, Stratmann B, Bang C, et al. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating microRNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol. 2015;35:1480–8.

    Article  CAS  PubMed  Google Scholar 

  52. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes. Circ Res. 2010;107:810–7.

    Article  CAS  PubMed  Google Scholar 

  53. Gallagher KA, Joshi A, Carson WF, et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 2015;64(4):1420–30.

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Hori K, Ding J, et al. Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol. 2011;226:1265–73.

    Article  CAS  PubMed  Google Scholar 

  55. Cho J-S, Kang J-H, Um J-Y, et al. Lipopolysaccharide induces pro-inflammatory cytokines and MMP production via TLR4 in nasal polyp-derived fibroblast and organ culture. PLoS One. 2014;9(11):e90683. doi:10.1371/journal.pone.0090683.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Lindblad Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Grant, S.E., Lindblad, W.J. (2017). Impact of the Diabetic State on Wound Healing Dynamics and Expression of Soluble Cellular Mediators. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_1

Download citation

Publish with us

Policies and ethics