Skip to main content
Log in

Expression and characterization of the SOS1 Arabidopsis salt tolerance protein

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

SOS1 is the plasma membrane Na+/H+ antiporter of Arabidopsis thaliana. It is responsible for the removal of intracellular sodium in exchange for an extracellular proton. SOS1 is composed of 1146 amino acids. Approximately 450 make the membrane domain, while the protein contains and a very large regulatory cytosolic domain of about 696 amino acids. Schizosaccharomyces pombe contains the salt tolerance Na+/H+ antiporter proteins sod2. We examined the ability of SOS1 to rescue salt tolerance in S. pombe with a knockout of the sod2 gene (sod2::ura4). In addition, we characterized the importance of the regulatory tail of SOS1, in expression of the protein in S. pombe. We expressed full-length SOS1 and SOS1 shortened at the C-terminus and ending at amino acids 766 (medium) and 481 (short). The short version of SOS1 conveyed salt tolerance to sod2::ura4 yeast and Western blotting revealed that the protein was present. The protein was also targeted to the plasma membrane. The medium and full-length SOS1 protein were partially degraded and were not as well expressed as the short version of SOS1. The SOS1 short protein was also able to reduce Na+ content in S. pombe. The full-length SOS1 dimerized and depended on the presence of the cytosolic tail. An analysis of SOS1 predicted a topology of 13 transmembrane segments, distinct from E. coli NhaA but similar to the Na+/H+ exchangers Methanocaldococcus jannaschii NhaP1 and Thermus thermophile NapA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  2. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  3. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNAS USA 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    Article  CAS  PubMed  Google Scholar 

  6. Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42

    Article  CAS  PubMed  Google Scholar 

  7. Chauhan S, Forsthoefel N, Ran Y, Quigley F, Nelson DE, Bohnert HJ (2000) Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J 24:511–522

    Article  CAS  PubMed  Google Scholar 

  8. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  9. Jia Z-P, McCullough N, Martel R, Hemmingsen S, Young PG (1992) Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J 11:1631–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Haworth RS, Lemire BD, Cragoe EJJ, Fliegel L (1991) Characterization of proton fluxes across the cytoplasmic membrane of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1098:79–89

    Article  CAS  PubMed  Google Scholar 

  11. Dibrov P, Young PG, Fliegel L (1998) Functional analysis of amino acid residues essential for activity in the Na+/H+ exchanger of fission yeast. Biochemistry 36:8282–8288

    Article  Google Scholar 

  12. Ndayizeye M, Touret N, Fliegel L (2009) Proline 146 is critical to the structure, function and targeting of sod2, the Na+/H+ exchanger of Schizosaccharomyces pombe. Biochim Biophys Acta 1788:983–992. doi:10.1016/j.bbamem.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Quintero FJ, Blatt MR, Pardo JM (2000) Functional conservation between yeast and plant endosomal Na(+)/H(+) antiporters. FEBS Lett 471:224–228

    Article  CAS  PubMed  Google Scholar 

  14. Gao X, Ren Z, Zhao Y, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dibrov P, Fliegel L (1998) Comparative molecular analysis of Na+/H+ exchangers: a unified model for Na+/H+ antiport? FEBS Lett 424:1–5

    Article  CAS  PubMed  Google Scholar 

  16. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41:W349–W357. doi:10.1093/nar/gkt381

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002) Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins 49:154–166. doi:10.1002/prot.10181

    Article  CAS  PubMed  Google Scholar 

  19. Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  CAS  PubMed  Google Scholar 

  20. Hofmann K, Stoffel W (1993) TMBASE—a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  21. Fliegel L, Wiebe C, Chua G, Young PG (2005) Functional expression and cellular localization of the Na+/H+ exchanger Sod2 of the fission yeast Schizosaccharomyces pombe. Can J Physiol Pharmacol 83:565–572

    Article  CAS  PubMed  Google Scholar 

  22. Slepkov ER, Chow S, Lemieux MJ, Fliegel L (2004) Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1. Biochem J 379:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ullah A, Kemp G, Lee B, Alves C, Young H, Sykes BD, Fliegel L (2013) Structural and functional analysis of transmembrane segment IV of the salt tolerance protein Sod2. J Biol Chem 288:24609–24624. doi:10.1074/jbc.M113.483065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wakabayashi S, Pang T, Su X, Shigekawa M (2000) A novel topology model of the human Na+/H+ exchanger isoform 1. J Biol Chem 275:7942–7949

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Basu A, Li X, Fliegel L (2015) Topological analysis of the Na/H exchanger. Biochim Biophys Acta 1848:2385–2393. doi:10.1016/j.bbamem.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  26. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA 108:2611–2616. doi:10.1073/pnas.1018921108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  CAS  PubMed  Google Scholar 

  28. Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz O, Kuhlbrandt W (2011) Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO J 30:439–449. doi:10.1038/emboj.2010.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee C, Kang HJ, von Ballmoos C, Newstead S, Uzdavinys P, Dotson DL, Iwata S, Beckstein O, Cameron AD, Drew D (2013) A two-domain elevator mechanism for sodium/proton antiport. Nature 501:573–577. doi:10.1038/nature12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. von Heijne G (2006) Membrane–protein topology. Nat Rev Mol Cell Biol 7:909–918. doi:10.1038/nrm2063

    Article  Google Scholar 

  31. Nunez-Ramirez R, Sanchez-Barrena MJ, Villalta I, Vega JF, Pardo JM, Quintero FJ, Martinez-Salazar J, Albert A (2012) Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na(+)/H(+) antiporter. J Mol Biol 424:283–294. doi:10.1016/j.jmb.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  32. Tzeng J, Lee BL, Sykes BD, Fliegel L (2010) Structural and functional analysis of transmembrane segment VI of the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 285:36656–36665. doi:10.1074/jbc.M110.161471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fliegel L (2005) Identification of conserved polar residues important for salt tolerance by the Na+/H+ exchanger of Schizosaccharomyces pombe. Mol Cell Biochem 268:83–92

    CAS  PubMed  Google Scholar 

  34. Wohlert D, Kuhlbrandt W, Yildiz O (2014) Structure and substrate ion binding in the sodium/proton antiporter PaNhaP. Elife 3:e03579. doi:10.7554/eLife.03579

    Article  PubMed  Google Scholar 

  35. Inoue H, Noumi T, Tsuchiya T, Kanazawa H (1995) Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli. FEBS Lett 363:264–268

    Article  CAS  PubMed  Google Scholar 

  36. Maes M, Rimon A, Kozachkov-Magrisso L, Friedler A, Padan E (2012) Revealing the ligand binding site of NhaA Na+/H+ antiporter and its pH dependence. J Biol Chem 287:38150–38157. doi:10.1074/jbc.M112.391128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paulino C, Kuhlbrandt W (2014) pH- and sodium-induced changes in a sodium/proton antiporter. Elife 3:e01412. doi:10.7554/eLife.01412

    PubMed  PubMed Central  Google Scholar 

  38. Hellmer J, Teubner A, Zeilinger C (2003) Conserved arginine and aspartate residues are critical for function of MjNhaP1, a Na+/H+ antiporter of M. jannaschii. FEBS Lett 542:32–36

    Article  CAS  PubMed  Google Scholar 

  39. Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:C223–C239

    Article  CAS  PubMed  Google Scholar 

  40. Padan E, Danieli T, Keren Y, Alkoby D, Masrati G, Haliloglu T, Ben-Tal N, Rimon A (2015) NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability. Proc Natl Acad Sci USA 112:E5575–E5582. doi:10.1073/pnas.1510964112

    Article  CAS  PubMed  Google Scholar 

  41. Fliegel L, Haworth RS, Dyck JRB (1993) Characterization of the placental brush border membrane Na+/H+ exchanger: identification of thiol-dependent transitions in apparent molecular size. Biochem J 289:101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moncoq K, Kemp G, Li X, Fliegel L, Young HS (2008) Dimeric structure of human Na+/H+ exchanger isoform 1 overproduced in Saccharomyces cerevisiae. J Biol Chem 283:4145–4154

    Article  CAS  PubMed  Google Scholar 

  43. Rimon A, Tzubery T, Padan E (2007) Monomers of the NhaA Na +/H + antiporter of Escherichia coli are fully functional yet dimers are beneficial under extreme stress conditions at alkaline pH in the presence of Na + or Li+. J Biol Chem 282:26810–26821. doi:10.1074/jbc.M704469200

    Article  CAS  PubMed  Google Scholar 

  44. Hisamitsu T, Pang T, Shigekawa M, Wakabayashi S (2004) Dimeric interaction between the cytoplasmic domains of the Na+/H+ exchanger NHE1 revealed by symmetrical intermolecular cross-linking and selective co-immunoprecipitation. Biochemistry 43:11135–11143

    Article  CAS  PubMed  Google Scholar 

  45. Hendus-Altenburger R, Kragelund BB, Pedersen SF (2014) Structural dynamics and regulation of the mammalian SLC9A family of Na(+)/H(+) exchangers. Curr Top Membr 73:69–148. doi:10.1016/B978-0-12-800223-0.00002-5

    Article  CAS  PubMed  Google Scholar 

  46. Idiris A, Bi K, Tohda H, Kumagai H, Giga-Hama Y (2006) Construction of a protease-deficient strain set for the fission yeast Schizosaccharomyces pombe, useful for effective production of protease-sensitive heterologous proteins. Yeast 23:83–99. doi:10.1002/yea.1342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from NSERC to LF. Debajyoti Dutta was partially supported by an NSERC Create grant to the International Research Training Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Fliegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Dutta, D. & Fliegel, L. Expression and characterization of the SOS1 Arabidopsis salt tolerance protein. Mol Cell Biochem 415, 133–143 (2016). https://doi.org/10.1007/s11010-016-2685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2685-2

Keywords

Navigation