Skip to main content
Log in

Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Most of the experimental studies have revealed that female heart is more tolerant to ischemia/reperfusion (I/R) injury as compared with the male myocardium. It is widely accepted that mitochondrial dysfunction, and particularly mitochondrial permeability transition pore (MPTP) opening, plays a major role in determining the extent of cardiac I/R injury. The aim of the present study was, therefore, to analyze (i) whether calcium-induced swelling of cardiac mitochondria is sex-dependent and related to the degree of cardiac tolerance to I/R injury and (ii) whether changes in MPTP components—cyclophilin D (CypD) and ATP synthase—can be involved in this process. We have observed that in mitochondria isolated from rat male and female hearts the MPTP has different sensitivity to the calcium load. Female mitochondria are more resistant both in the extent and in the rate of the mitochondrial swelling at higher calcium concentration (200 µM). At low calcium concentration (50 µM) no differences were observed. Our data further suggest that sex-dependent specificity of the MPTP is not the result of different amounts of ATP synthase and CypD, or their respective ratio in mitochondria isolated from male and female hearts. Our results indicate that male and female rat hearts contain comparable content of MPTP and its regulatory protein CypD; parallel immunodetection revealed also the same contents of adenine nucleotide translocator or voltage-dependent anion channel. Increased resistance of female heart mitochondria thus cannot be explained by changes in putative components of MPTP, and rather reflects regulation of MPTP function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Duvall WL (2003) Cardiovascular disease in women. Mt Sinai J Med 70(5):293–305

    PubMed  Google Scholar 

  2. Bassuk SS, Manson JE (2010) Physical activity and cardiovascular disease prevention in women: a review of the epidemiologic evidence. Nutr Metab Cardiovasc Dis 20(6):467–473

    Article  PubMed  CAS  Google Scholar 

  3. Ostadal B, Ostadalova I, Kolar F, Charvatova Z, Netuka I (2009) Ontogenetic development of cardiac tolerance to oxygen deprivation—possible mechanisms. Physiol Res 58(Suppl 2):S1–S12

    PubMed  Google Scholar 

  4. Ostadal P, Ostadal B (2012) Women and the management of acute coronary syndrome. Can J Physiol Pharmacol 90(9):1151–1159

    Article  PubMed  CAS  Google Scholar 

  5. Ostadal B, Ostadal P (2014) Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 171(3):541–554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Ostadal B, Prochazka J, Pelouch V, Urbanova D, Widimsky J (1984) Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia. Physiol Bohemoslov 33(2):129–138

    PubMed  CAS  Google Scholar 

  7. Johnson MS, Moore RL, Brown DA (2006) Sex differences in myocardial infarct size are abolished by sarcolemmal KATP channel blockade in rat. Am J Physiol Heart Circ Physiol 290(6):H2644–H2647

    Article  PubMed  CAS  Google Scholar 

  8. Murphy E, Steenbergen C (2007) Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 75(3):478–486

    Article  PubMed  CAS  Google Scholar 

  9. Murphy E, Steenbergen C (2007) Cardioprotection in females: a role for nitric oxide and altered gene expression. Heart Fail Rev 12(3–4):293–300

    Article  PubMed  CAS  Google Scholar 

  10. Ross JL, Howlett SE (2012) Age and ovariectomy abolish beneficial effects of female sex on rat ventricular myocytes exposed to simulated ischemia and reperfusion. PLoS One 7(6):e38425

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Chu SH, Sutherland K, Beck J, Kowalski J, Goldspink P, Schwertz D (2005) Sex differences in expression of calcium-handling proteins and beta-adrenergic receptors in rat heart ventricle. Life Sci 76(23):2735–2749

    Article  PubMed  CAS  Google Scholar 

  12. Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S (2004) Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol 37(2):507–513

    Article  PubMed  CAS  Google Scholar 

  13. Colom B, Oliver J, Roca P, Garcia-Palmer FJ (2007) Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res 74(3):456–465

    Article  PubMed  CAS  Google Scholar 

  14. Vijay V, Han T, Moland CL, Kwekel JC, Fuscoe JC, Desai VG (2015) Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS One 10(1):e0117047

    Article  PubMed  PubMed Central  Google Scholar 

  15. Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38(4):841–860

    Article  PubMed  CAS  Google Scholar 

  16. Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141

    Article  PubMed  CAS  Google Scholar 

  18. Gutierrez-Aguilar M, Baines CP (2015) Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. Biochim Biophys Acta 1850(10):2041–2047

    Article  PubMed  Google Scholar 

  19. Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25(12):1461–1469

    Article  PubMed  CAS  Google Scholar 

  20. Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277(38):34793–34799

    Article  PubMed  CAS  Google Scholar 

  21. Rasola A, Bernardi P (2015) Reprint of “The mitochondrial permeability transition pore and its adaptive responses in tumor cells”. Cell Calcium 58(1):18–26

    Article  PubMed  CAS  Google Scholar 

  22. Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284(49):33982–33988

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110(15):5887–5892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Carraro M, Giorgio V, Sileikyte J, Sartori G, Forte M, Lippe G, Zoratti M, Szabo I, Bernardi P (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem 289(23):15980–15985

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12(4):674–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111(29):10580–10585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Milerova M, Charvatova Z, Skarka L, Ostadalova I, Drahota Z, Fialova M, Ostadal B (2010) Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 335(1–2):147–153

    Article  PubMed  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  29. Pecinova A, Drahota Z, Nuskova H, Pecina P, Houstek J (2011) Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion 11(5):722–728

    Article  PubMed  CAS  Google Scholar 

  30. Drahota Z, Endlicher R, Stankova P, Rychtrmoc D, Milerova M, Cervinkova Z (2012) Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves. J Bioenerg Biomembr 44(3):309–315

    Article  PubMed  CAS  Google Scholar 

  31. Castilho RF, Kowaltowski AJ, Vercesi AE (1998) 3,5,3′-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Arch Biochem Biophys 354(1):151–157

    Article  PubMed  CAS  Google Scholar 

  32. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379

    Article  PubMed  CAS  Google Scholar 

  33. Kolarov J, Kuzela S, Krempasky V, Lakota J, Ujhazy V (1978) ADP, ATP translocator protein of rat heart, liver and hepatoma mitochondria exhibits immunological cross-reactivity. FEBS Lett 96(2):373–376

    Article  PubMed  CAS  Google Scholar 

  34. Gostimskaya IS, Grivennikova VG, Zharova TV, Bakeeva LE, Vinogradov AD (2003) In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Anal Biochem 313(1):46–52

    Article  PubMed  CAS  Google Scholar 

  35. Drahota Z, Milerova M, Endlicher R, Rychtrmoc D, Cervinkova Z, Ost’adal B (2012) Developmental changes of the sensitivity of cardiac and liver mitochondrial permeability transition pore to calcium load and oxidative stress. Physiol Res 61(Suppl 1):S165–S172

    PubMed  CAS  Google Scholar 

  36. Cassarino DS, Parks JK, Parker WD Jr, Bennett JP Jr (1999) The parkinsonian neurotoxin MPP + opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453(1):49–62

    Article  PubMed  CAS  Google Scholar 

  37. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34(12):1475–1486

    Article  PubMed  CAS  Google Scholar 

  40. Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204(2):334–341

    Article  PubMed  CAS  Google Scholar 

  41. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174(1–2):167–172

    Article  PubMed  CAS  Google Scholar 

  42. Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Alam MR, Baetz D, Ovize M (2015) Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 78:80–89

    Article  PubMed  CAS  Google Scholar 

  44. Rasola A, Sciacovelli M, Chiara F, Pantic B, Brusilow WS, Bernardi P (2010) Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci USA 107(2):726–731

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Linard D, Kandlbinder A, Degand H, Morsomme P, Dietz KJ, Knoops B (2009) Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? Arch Biochem Biophys 491(1–2):39–45

    Article  PubMed  CAS  Google Scholar 

  46. Nguyen TT, Stevens MV, Kohr M, Steenbergen C, Sack MN, Murphy E (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286(46):40184–40192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY) 2(12):914–923

    CAS  Google Scholar 

  48. Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123(Pt 6):894–902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Sack MN (2011) Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart. Am J Physiol Heart Circ Physiol 301(6):H2191–H2197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Williams GS, Boyman L, Lederer WJ (2015) Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35–45

    Article  PubMed  CAS  Google Scholar 

  51. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, Andre-Fouet X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359(5):473–481

    Article  PubMed  CAS  Google Scholar 

  52. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662

    Article  PubMed  CAS  Google Scholar 

  53. De Loof A (2015) The essence of female-male physiological dimorphism: “Differential Ca2+—homeostasis enabled by the interplay between farnesol-like endogenous sesquiterpenoids and sex-steroiids? The Calcigender paradigm”. Gen Comp Endocrinol 12:131–146

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by research Grants from Grant Agency of the Czech Republic (14-36804G, 13-10267S, 303/12/1162) and Grant Agency of Ministry of Health of the Czech Republic (NT14050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohuslav Ošťádal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milerová, M., Drahota, Z., Chytilová, A. et al. Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem 412, 147–154 (2016). https://doi.org/10.1007/s11010-015-2619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2619-4

Keywords

Navigation