Skip to main content

Advertisement

Log in

Integrating ChIP-sequencing and digital gene expression profiling to identify BRD7 downstream genes and construct their regulating network

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

BRD7 is a single bromodomain-containing protein that functions as a subunit of the SWI/SNF chromatin-remodeling complex to regulate transcription. It also interacts with the well-known tumor suppressor protein p53 to trans-activate genes involved in cell cycle arrest. In this paper, we report an integrative analysis of genome-wide chromatin occupancy of BRD7 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and digital gene expression (DGE) profiling by RNA-sequencing upon the overexpression of BRD7 in human cells. We localized 156 BRD7-binding peaks representing 184 genes by ChIP-sequencing, and most of these peaks were co-localized with histone modification sites. Four novel motifs were significantly represented in these BRD7-enriched regions. Ingenuity pathway analysis revealed that 22 of these BRD7 target genes were involved in a network regulating cell death and survival. DGE profiling identified 560 up-regulated genes and 1088 down-regulated genes regulated by BRD7. Using Gene Ontology and pathway analysis, we found significant enrichment of the cell cycle and apoptosis pathway genes. For the integrative analysis of the ChIP-seq and DEG data, we constructed a regulating network of BRD7 downstream genes, and this network suggests multiple feedback regulations of the pathways. Furthermore, we validated BIRC2, BIRC3, TXN2, and NOTCH1 genes as direct, functional BRD7 targets, which were involved in the cell cycle and apoptosis pathways. These results provide a genome-wide view of chromatin occupancy and the gene regulation network of the BRD7 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu Y, Zhu S, Zhang B, Zhou M, Li X, Li G (2002) Screening of BRD7 interacting proteins by yeast two-hybrid system. Sci China C Life Sci 45:546–552. doi:10.1360/02yc9060

    Article  CAS  PubMed  Google Scholar 

  2. Zhou J, Ma J, Zhang BC, Li XL, Shen SR, Zhu SG, Xiong W, Liu HY, Huang H, Zhou M, Li GY (2004) BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol 200:89–98. doi:10.1002/jcp.20013

    Article  CAS  PubMed  Google Scholar 

  3. Zeng Z, Huang H, Zhang W, Xiang B, Zhou M, Zhou Y, Ma J, Yi M, Li X, Li X, Xiong W, Li G (2011) Nasopharyngeal carcinoma: advances in genomics and molecular genetics. Sci China Life Sci 54:966–975. doi:10.1007/s11427-011-4223-5

    Article  PubMed  Google Scholar 

  4. Zeng Z, Zhou Y, Zhang W, Li X, Xiong W, Liu H, Fan S, Qian J, Wang L, Li Z, Shen S, Li G (2006) Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus. Genet Med 8:156–160. doi:10.1097/01.gim.0000196821.87655.d0

    Article  CAS  PubMed  Google Scholar 

  5. Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, Li XL, Hu DX, Tan C, Xiang JJ, Zhou J, Deng H, Fan SQ, Li WF, Wang R, Zhou M, Zhu SG, Lu HB, Qian J, Zhang BC, Wang JR, Ma J, Xiao BY, Huang H, Zhang QH, Zhou YH, Luo XM, Zhou HD, Yang YX, Dai HP, Feng GY, Pan Q, Wu LQ, He L, Li GY (2004) A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 64:1972–1974

    Article  CAS  PubMed  Google Scholar 

  6. Sokolenko AP, Preobrazhenskaya EV, Aleksakhina SN, Iyevleva AG, Mitiushkina NV, Zaitseva OA, Yatsuk OS, Tiurin VI, Strelkova TN, Togo AV, Imyanitov EN (2015) Candidate gene analysis of BRCA1/2 mutation-negative high-risk Russian breast cancer patients. Cancer Lett 359:259–261. doi:10.1016/j.canlet.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  7. Kikuchi M, Okumura F, Tsukiyama T, Watanabe M, Miyajima N, Tanaka J, Imamura M, Hatakeyama S (2009) TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim Biophys Acta 1793:1828–1836. doi:10.1016/j.bbamcr.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Park YA, Lee JW, Choi JJ, Jeon HK, Cho Y, Choi C, Kim TJ, Lee NW, Kim BG, Bae DS (2012) The interactions between MicroRNA-200c and BRD7 in endometrial carcinoma. Gynecol Oncol 124:125–133. doi:10.1016/j.ygyno.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  9. Wu WJ, Hu KS, Chen DL, Zeng ZL, Luo HY, Wang F, Wang DS, Wang ZQ, He F, Xu RH (2013) Prognostic relevance of BRD7 expression in colorectal carcinoma. Eur J Clin Investig 43:131–140. doi:10.1111/eci.12024

    Article  CAS  Google Scholar 

  10. Park YA, Lee JW, Kim HS, Lee YY, Kim TJ, Choi CH, Choi JJ, Jeon HK, Cho YJ, Ryu JY, Kim BG, Bae DS (2014) Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 20:565–575. doi:10.1158/1078-0432.CCR-13-1271

    Article  CAS  PubMed  Google Scholar 

  11. Zhu B, Tian J, Zhong R, Tian Y, Chen W, Qian J, Zou L, Xiao M, Shen N, Yang H, Lou J, Qiu Q, Ke J, Lu X, Song W, Li H, Liu L, Wang L, Miao X (2014) Genetic variants in the SWI/SNF complex and smoking collaborate to modify the risk of pancreatic cancer in a Chinese population. Mol Carcinog. doi:10.1002/mc.22140

    PubMed Central  Google Scholar 

  12. Tang H, Wang Z, Liu Q, Liu X, Wu M, Li G (2014) Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PLoS ONE 9:e84146. doi:10.1371/journal.pone.0084146

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hu K, Liao D, Wu W, Han AJ, Shi HJ, Wang F, Wang X, Zhong L, Duan T, Wu Y, Cao J, Tang J, Sang Y, Wang L, Lv X, Xu S, Zhang RH, Deng WG, Li SP, Zeng YX, Kang T (2014) Targeting the anaphase-promoting complex/cyclosome (APC/C)- bromodomain containing 7 (BRD7) pathway for human osteosarcoma. Oncotarget 5:3088–3100

    Article  PubMed Central  PubMed  Google Scholar 

  14. Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR, Li GY (2007) BRD7 suppresses the growth of Nasopharyngeal Carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem 303:141–149. doi:10.1007/s11010-007-9466-x

    Article  CAS  PubMed  Google Scholar 

  15. Zhou M, Xu XJ, Zhou HD, Liu HY, He JJ, Li XL, Peng C, Xiong W, Fan SQ, Lu JH, Ouyang J, Shen SR, Xiang B, Li GY (2006) BRD2 is one of BRD7-interacting proteins and its over-expression could initiate apoptosis. Mol Cell Biochem 292:205–212. doi:10.1007/s11010-006-9233-4

    Article  CAS  PubMed  Google Scholar 

  16. Burrows AE, Smogorzewska A, Elledge SJ (2010) Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci USA 107:14280–14285. doi:10.1073/pnas.1009559107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R, Del Sal G (2010) BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 12:380–389. doi:10.1038/ncb2038

    Article  CAS  PubMed  Google Scholar 

  18. Penkert J, Schlegelberger B, Steinemann D, Gadzicki D (2012) No evidence for breast cancer susceptibility associated with variants of BRD7, a component of p53 and BRCA1 pathways. Fam Cancer 11:601–606. doi:10.1007/s10689-012-9556-0

    Article  CAS  PubMed  Google Scholar 

  19. Kaeser MD, Aslanian A, Dong MQ, Yates JR 3rd, Emerson BM (2008) BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 283:32254–32263. doi:10.1074/jbc.M806061200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhou M, Liu H, Xu X, Zhou H, Li X, Peng C, Shen S, Xiong W, Ma J, Zeng Z, Fang S, Nie X, Yang Y, Zhou J, Xiang J, Cao L, Peng S, Li S, Li G (2006) Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem 98:920–930. doi:10.1002/jcb.20788

    Article  CAS  PubMed  Google Scholar 

  21. Sun H, Liu J, Zhang J, Shen W, Huang H, Xu C, Dai H, Wu J, Shi Y (2007) Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem Biophys Res Commun 358:435–441. doi:10.1016/j.bbrc.2007.04.139

    Article  CAS  PubMed  Google Scholar 

  22. Harte MT, O’Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, Mullan PB, Harkin DP (2010) BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 70:2538–2547. doi:10.1158/0008-5472.CAN-09-2089

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani F, Drost J, Voorhoeve PM, Del Sal G, Agami R (2010) Gene regulation and tumor suppression by the bromodomain-containing protein BRD7. Cell Cycle 9:2777–2781

    Article  CAS  PubMed  Google Scholar 

  24. Liu H, Peng C, Zhou M, Zhou J, Shen S, Zhou H, Xiong W, Luo X, Peng S, Niu Z, Ouyang J, Li X, Li G (2006) Cloning and characterization of the BRD7 gene promoter. DNA Cell Biol 25:346–358. doi:10.1089/dna.2006.25.346

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Zhou M, Luo X, Zhang L, Niu Z, Peng C, Ma J, Peng S, Zhou H, Xiang B, Li X, Li S, He J, Li X, Li G (2008) Transcriptional regulation of BRD7 expression by Sp1 and c-Myc. BMC Mol Biol 9:111. doi:10.1186/1471-2199-9-111

    Article  PubMed Central  PubMed  Google Scholar 

  26. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858. doi:10.1038/nature07730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Liang F, Xu K, Gong ZJ, Li Q, Ma J, Xiong W, Zeng ZY, Li GY (2013) ChIP-seq: a new technique for genome-wide profiling of protein-DNA interaction. Progr Biochem Biophys 40:216–227. doi:10.3724/Sp.J.1206.2012.00305

    CAS  Google Scholar 

  28. Ozsolak F, Ting DT, Wittner BS, Brannigan BW, Paul S, Bardeesy N, Ramaswamy S, Milos PM, Haber DA (2010) Amplification-free digital gene expression profiling from minute cell quantities. Nat Methods 7:619–621. doi:10.1038/nmeth.1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zeng Z, Huang H, Huang L, Sun M, Yan Q, Song Y, Wei F, Bo H, Gong Z, Zeng Y, Li Q, Zhang W, Li X, Xiang B, Li X, Li Y, Xiong W, Li G (2014) Regulation network and expression profiles of Epstein–Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas. Sci China Life Sci 57:315–326. doi:10.1007/s11427-013-4577-y

    Article  CAS  PubMed  Google Scholar 

  30. Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W, Li X, Chen P, Liang F, Xiang B, Ma J, Wu M, Tang H, Deng M, Zeng X, Tang K, Xiong W, Li G (2014) LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene 33:2098–2109. doi:10.1038/onc.2013.161

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Liao Q, Wei F, Li X, Zhang W, Fan S, Shi L, Li X, Gong Z, Ma J, Zhou M, Xiang J, Peng S, Xiang B, Deng H, Yang Y, Li Y, Xiong W, Zeng Z, Li G (2013) LPLUNC1 inhibits nasopharyngeal carcinoma cell growth via down-regulation of the MAP kinase and cyclin D1/E2F pathways. PLoS ONE 8:e62869. doi:10.1371/journal.pone.0062869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wei F, Li XY, Li XL, Zhang WL, Liao QJ, Zeng Y, Gong ZJ, Zhou M, Ma J, Xiong W, Shen SR, Zeng ZY (2014) The effect and mechanism of PLUNC protein family against inflammation and carcinogenesis of nasopharyngeal carcinoma. Progr Biochem Biophys 41:24–31. doi:10.3724/Sp.J.1206.2013.00396

    CAS  Google Scholar 

  33. Xiong W, Wu X, Starnes S, Johnson SK, Haessler J, Wang S, Chen L, Barlogie B, Shaughnessy JD Jr, Zhan F (2008) An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 112:4235–4246. doi:10.1182/blood-2007-10-119123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Gong ZJ, Huang HB, Xu K, Liang F, Li XL, Xiong W, Zeng ZY, Li GY (2012) Advances in microRNAs and TP53 gene regulatory network. Progr Biochem Biophys 39:1133–1144. doi:10.3724/Sp.J.1206.2012.00015

    Article  CAS  Google Scholar 

  35. Zhang W, Fan S, Zou G, Shi L, Zeng Z, Ma J, Zhou Y, Li X, Zhang X, Li X, Tan M, Xiong W, Li G (2015) Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma. Tumour Biol 36:675–683. doi:10.1007/s13277-014-2650-1

    Article  PubMed  Google Scholar 

  36. Zhang W, Zeng Z, Fan S, Wang J, Yang J, Zhou Y, Li X, Huang D, Liang F, Wu M, Tang K, Cao L, Li X, Xiong W, Li G (2012) Evaluation of the prognostic value of TGF-beta superfamily type I receptor and TGF-beta type II receptor expression in nasopharyngeal carcinoma using high-throughput tissue microarrays. J Mol Histol 43:297–306. doi:10.1007/s10735-012-9392-4

    Article  CAS  PubMed  Google Scholar 

  37. Zeng Z, Zhou Y, Xiong W, Luo X, Zhang W, Li X, Fan S, Cao L, Tang K, Wu M, Li G (2007) Analysis of gene expression identifies candidate molecular markers in nasopharyngeal carcinoma using microdissection and cDNA microarray. J Cancer Res Clin Oncol 133:71–81. doi:10.1007/s00432-006-0136-2

    Article  CAS  PubMed  Google Scholar 

  38. Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, Cao L, Tang K, Qian J, Shen SR, Li GY (2007) Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol 38:120–133. doi:10.1016/j.humpath.2006.06.023

    Article  CAS  PubMed  Google Scholar 

  39. Huang HB, Liang F, Xiong W, Li XL, Zeng ZY, Li GY (2012) Bioinformatics accelerates drug repositioning. Progr Biochem Biophys 39:35–44. doi:10.3724/Sp.J.1206.2011.00453

    Article  Google Scholar 

  40. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373. doi:10.1093/nar/gkl198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Shen Y, Katsaros D, Loo LW, Hernandez BY, Chong C, Canuto EM, Biglia N, Lu L, Risch H, Chu WM, Yu H (2015) Prognostic and predictive values of long non-coding RNA LINC00472 in breast cancer. Oncotarget 6:8579–8592

    Article  PubMed Central  PubMed  Google Scholar 

  42. Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M, Jiricny J, Buffoli F, Marra G (2013) Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis 2:e56. doi:10.1038/oncsis.2013.21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X (2015) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol 36:1477–1486. doi:10.1007/s13277-014-2631-4

    Article  CAS  PubMed  Google Scholar 

  44. Ma KX, Wang HJ, Li XR, Li T, Su G, Yang P, Wu JW (2015) Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol 36:3355–3359. doi:10.1007/s13277-014-2969-7

    Article  CAS  PubMed  Google Scholar 

  45. Pang EJ, Yang R, Fu XB, Liu YF (2015) Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol 36:2403–2407. doi:10.1007/s13277-014-2850-8

    Article  CAS  PubMed  Google Scholar 

  46. Zhang HM, Yang FQ, Chen SJ, Che J, Zheng JH (2015) Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol 36:2947–2955. doi:10.1007/s13277-014-2925-6

    Article  CAS  PubMed  Google Scholar 

  47. Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, Xu TP, Xia R, Yang JS, De W, Chen J (2014) Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 5:2276–2292

    Article  PubMed Central  PubMed  Google Scholar 

  48. Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107:11–18. doi:10.1002/jcb.22077

    Article  CAS  PubMed  Google Scholar 

  49. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680. doi:10.1038/nrg2641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI, Poland GA, Wieben ED, Kocher JP (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina genome analyzer. BMC Genomics 10:531. doi:10.1186/1471-2164-10-531

    Article  PubMed Central  PubMed  Google Scholar 

  51. Dyson MH, Rose S, Mahadevan LC (2001) Acetyllysine-binding and function of bromodomain-containing proteins in chromatin. Front Biosci 6:D853–D865

    Article  CAS  PubMed  Google Scholar 

  52. Horn PJ, Peterson CL (2001) The bromodomain: a regulator of ATP-dependent chromatin remodeling? Front Biosci 6:D1019–D1023

    Article  CAS  PubMed  Google Scholar 

  53. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379:349–353. doi:10.1038/379349a0

    Article  CAS  PubMed  Google Scholar 

  54. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223. doi:10.1093/emboj/17.8.2215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30:689–700. doi:10.1016/j.molcel.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  56. Samuel T, Okada K, Hyer M, Welsh K, Zapata JM, Reed JC (2005) cIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Res 65:210–218

    CAS  PubMed  Google Scholar 

  57. Jin HS, Lee TH (2006) Cell cycle-dependent expression of cIAP2 at G2/M phase contributes to survival during mitotic cell cycle arrest. Biochem J 399:335–342. doi:10.1042/BJ20060612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP (2004) Thioredoxin and its role in toxicology. Toxicol Sci 78:3–14. doi:10.1093/toxsci/kfh050

    Article  CAS  PubMed  Google Scholar 

  59. Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA (2007) Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46:8472–8483. doi:10.1021/bi700449x

    Article  CAS  PubMed  Google Scholar 

  60. Hansen JM, Zhang H, Jones DP (2006) Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis. Toxicol Sci 91:643–650. doi:10.1093/toxsci/kfj175

    Article  CAS  PubMed  Google Scholar 

  61. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537. doi:10.1158/0008-5472.CAN-05-1069

    Article  CAS  PubMed  Google Scholar 

  62. Hassan WA, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K, Ito T (2014) Notch1 controls cell invasion and metastasis in small cell lung carcinoma cell lines. Lung Cancer 86:304–310. doi:10.1016/j.lungcan.2014.10.007

    Article  PubMed  Google Scholar 

  63. Jiang L, Wu J, Chen Q, Hu X, Li W, Hu G (2011) Notch1 expression is upregulated in glioma and is associated with tumor progression. J Clin Neurosci 18:387–390. doi:10.1016/j.jocn.2010.07.131

    Article  CAS  PubMed  Google Scholar 

  64. Gao C, Liu SG, Zhang RD, Li WJ, Zhao XX, Cui L, Wu MY, Zheng HY, Li ZG (2014) NOTCH1 mutations are associated with favourable long-term prognosis in paediatric T-cell acute lymphoblastic leukaemia: a retrospective study of patients treated on BCH-2003 and CCLG-2008 protocol in China. Br J Haematol 166:221–228. doi:10.1111/bjh.12866

    Article  CAS  PubMed  Google Scholar 

  65. Gong Z, Zhang S, Zeng Z, Wu H, Yang Q, Xiong F, Shi L, Yang J, Zhang W, Zhou Y, Zeng Y, Li X, Xiang B, Peng S, Zhou M, Tan M, Li Y, Xiong W, Li G (2014) LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2. PLoS ONE 9:e110674. doi:10.1371/journal.pone.0110674

    Article  PubMed Central  PubMed  Google Scholar 

  66. Gong Z, Zhang S, Zhang W, Huang H, Li Q, Deng H, Ma J, Zhou M, Xiang J, Wu M, Li X, Xiong W, Li X, Li Y, Zeng Z, Li G (2012) Long non-coding RNAs in cancer. Sci China Life Sci 55:1120–1124. doi:10.1007/s11427-012-4413-9

    Article  PubMed  Google Scholar 

  67. Zhang W, Huang C, Gong Z, Zhao Y, Tang K, Li X, Fan S, Shi L, Li X, Zhang P, Zhou Y, Huang D, Liang F, Zhang X, Wu M, Cao L, Wang J, Li Y, Xiong W, Zeng Z, Li G (2013) Expression of LINC00312, a long intergenic non-coding RNA, is negatively correlated with tumor size but positively correlated with lymph node metastasis in nasopharyngeal carcinoma. J Mol Histol 44:545–554. doi:10.1007/s10735-013-9503-x

    Article  CAS  PubMed  Google Scholar 

  68. Tang K, Wei F, Bo H, Huang HB, Zhang WL, Gong ZJ, Li XY, Song YL, Liao QJ, Peng SP, Xiang JJ, Zhou M, Ma J, Li XL, Xiong W, Li Y, Zeng ZY, Li GY (2014) Cloning and functional characterization of a novel long non-coding RNA gene associated with hepatocellular carcinoma. Progr Biochem Biophys 41:153–162. doi:10.3724/Sp.J.1206.2012.00613

    CAS  Google Scholar 

  69. Bo H, Gong Z, Zhang W, Li X, Zeng Y, Liao Q, Chen P, Shi L, Lian Y, Jing Y, Tang K, Li Z, Zhou Y, Zhou M, Xiang B, Li X, Yang J, Xiong W, Li G and Zeng Z (2015) Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget 6:20404–20418. doi:10.18632/oncotarget.4057

    Article  PubMed Central  PubMed  Google Scholar 

  70. Zeng Z, Bo H, Gong Z, Lian Y, Li X, Li X, Zhang W, Deng H, Zhou M, Peng S, Li G, Xiong W (2015) AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumour Biol. doi:10.1007/s13277-015-3860-x

    Google Scholar 

  71. Zeng Z, Fan S, Zhang X, Li S, Zhou M, Xiong W, Tan M, Zhang W, Li G (2015) Epstein–Barr virus-encoded small RNA 1 (EBER-1) could predict good prognosis in nasopharyngeal carcinoma. Clin Transl Oncol. doi:10.1007/s12094-015-1354-3

    Google Scholar 

  72. Li YW, Wang YM, Zhang XY, Xue D, Kuang B, Pan XY, Jing YZ, Li XL, Zhou M, Xiong W, Zeng ZY, Li GY (2015) Progress of long noncoding RNA HOTAIR in human cancer. Progr Biochem Biophys 42:228–235. doi:10.16476/j.pibb.2014.0230

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the National Natural Science Foundation of China (81172189, 81272298, 81372907, 81472531, 81572787, 81528019, and 81572748) and the Natural Science Foundation of Hunan Province (14JJ1010, 2015JJ1022, and 2015JJ2148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1. BRD7-binding peaks identified by ChIP-seq. Supplementary material 1 (XLS 38 kb)

Supplemental Table S2. BRD7 target genes identified by ChIP-seq. Supplementary material 2 (XLS 52 kb)

Supplemental Table S3. Differentially expressed genes dysregulated by BRD7. Supplementary material 3 (XLS 976 kb)

11010_2015_2568_MOESM4_ESM.jpg

Supplemental Fig. S1. Regulatory network of BRD7 target genes and their potential downstream genes identified by ChIP-seq and DGE profiling. A total of 184 BRD7 target genes identified by ChIP-seq, as well as 1648 BRD7-regulated genes identified by DGE profiling, were entered into an interaction database, STRING, to find their functional interacting relationships, and then a regulatory network of BRD7 target genes and regulated genes was constructed and illustrated by Cytoscape. BRD7 was surrounded by its target genes, while other BRD7-regulated genes were laid in the outer cycle. Supplementary material 4 (JPEG 1915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Xiong, W., Zhou, M. et al. Integrating ChIP-sequencing and digital gene expression profiling to identify BRD7 downstream genes and construct their regulating network. Mol Cell Biochem 411, 57–71 (2016). https://doi.org/10.1007/s11010-015-2568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2568-y

Keywords

Navigation