Skip to main content
Log in

HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The proinflammatory factor high mobility group box protein 1 (HMGB1) has been implicated as an important mediator of many chronic inflammatory diseases, including asthma. Human bronchial epithelial cells (HBECs) play a central role in the pathogenesis of asthma. However, the effects of HMGB1 on HBECs and the underlying mechanisms remain unknown. Here, we investigated receptor expression and proinflammatory cytokine production by primary cultures of HBECs stimulated by HMGB1. We then examined the effects of specific receptor blockade and inhibition of p38 MAPK, ERK1/2, or PI3-K on HMGB1-induced expression of proinflammatory cytokines. HMGB1 increased the expression and secretion of TNF-α, TSLP, MMP-9, and VEGF in a dose- and time-dependent manner. HMGB1 also induced elevated expression of RAGE protein. Secretion of TNF-α, VEGF, MMP-9, and TSLP was significantly decreased by RAGE blockade and p38 MAPK pathway inhibition, while a less pronounced effect was mediated by ERK1/2 inhibition. These observations suggest that HMGB1 binds RAGE and promotes activities of p38 MAPK and ERK1/2 pathways in HBECs. This then enhances the expression of TNF-α, VEGF, MMP-9, and TSLP, which are the important inflammatory factors in asthma. These results demonstrate that HMGB1 enhances the inflammatory responses of HBECs, which are involved in the modulation of inflammatory processes in asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hreggvidsdottir HS, Östberg T, Wähämaa H et al (2009) The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation[J]. J Leukoc Biol 86(3):655–662

    CAS  PubMed  Google Scholar 

  2. Huang W, Tang Y, Li L (2010) HMGB1, a potent proinflammatory cytokine in sepsis[J]. Cytokine 51(2):119–126

    Article  CAS  PubMed  Google Scholar 

  3. McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis[J]. Nat Rev Immunol 7(6):429–442

    CAS  PubMed  Google Scholar 

  4. Lamkanfi M, Sarkar A, Walle LV et al (2010) Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia[J]. J Immunol 185(7):4385–4392

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Hou C, Zhao H, Liu L et al (2011) High mobility group protein B1 (HMGB1) in asthma: comparison of patients with chronic obstructive pulmonary disease and healthy controls[J]. Mol Med 17(7–8):807

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Lee CC, Lai YT, Chang HT et al (2013) Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma[J]. Biochem Pharmacol 86(7):940–949

    CAS  PubMed  Google Scholar 

  7. Jeffery PK, Haahtela T (2006) Allergic rhinitis and asthma: inflammation in a one-airway condition[J]. BMC Pulm Med 6(Suppl 1):S5

    PubMed Central  PubMed  Google Scholar 

  8. Holgate ST (2008) The airway epithelium is central to the pathogenesis of asthma[J]. Allergol Int 57(1):1–10

    CAS  PubMed  Google Scholar 

  9. Page K, Hughes VS, Bennett GW et al (2006) German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cells[J]. Allergy 61(8):988–995

    Article  CAS  PubMed  Google Scholar 

  10. Kranenburg AR, De Boer WI, Alagappan VKT et al (2005) Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease[J]. Thorax 60(2):106–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Davies DE (2009) The role of the epithelium in airway remodeling in asthma[J]. Proc Am Thorac Soc 6(8):678–682

    PubMed Central  PubMed  Google Scholar 

  12. Lambrecht BN, Hammad H (2012) The airway epithelium in asthma[J]. Nat Med 18(5):684–692

    CAS  PubMed  Google Scholar 

  13. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR signalling[J]. Mediat Inflamm 42(4):506–508

    Google Scholar 

  14. Park JS, Svetkauskaite D, He Q et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein[J]. J Biol Chem 279(9):7370–7377

    CAS  PubMed  Google Scholar 

  15. Park JS, Arcaroli J, Yum HK et al (2003) Activation of gene expression in human neutrophils by high mobility group box 1 protein[J]. Am J Physiol Cell Physiol 284(4):C870–C879

    CAS  PubMed  Google Scholar 

  16. Oettgen HC (2011) Mast cells and tumour necrosis factor alpha (TNF-α): partners in crime in asthma pathogenesis[J]. Clin Immunol 140(1):1–2

    CAS  PubMed  Google Scholar 

  17. Andersson U, Wang H, Palmblad K et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes[J]. J Exp Med 192(4):565–570

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Fiuza C, Bustin M, Talwar S et al (2003) Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells[J]. Blood 101(7):2652–2660

    Article  CAS  PubMed  Google Scholar 

  19. Yamada S, Maruyama I (2007) HMGB1, a novel inflammatory cytokine[J]. Clin Chim Acta 375(1):36–42

    CAS  PubMed  Google Scholar 

  20. Popa C, Netea MG, Van Riel PLCM et al (2007) The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk[J]. J Lipid Res 48(4):751–762

    CAS  PubMed  Google Scholar 

  21. Ying S, O’Connor B, Ratoff J et al (2008) Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease[J]. J Immunol 181(4):2790–2798

    CAS  PubMed  Google Scholar 

  22. Han Z, Zhong N (2003) Expression of matrix metalloproteinases MMP-9 within the airways in asthma[J]. Respir Med 97(5):563–567

    CAS  PubMed  Google Scholar 

  23. Asai K, Kanazawa H, Kamoi H et al (2003) Increased levels of vascular endothelial growth factor in induced sputum in asthmatic patients[J]. Clin Exp Allergy 33(5):595–599

    CAS  PubMed  Google Scholar 

  24. Sha Y, Zmijewski J, Xu Z et al (2008) HMGB1 develops enhanced proinflammatory activity by binding to cytokines[J]. J Immunol 180(4):2531–2537

    CAS  PubMed  Google Scholar 

  25. Qin YH, Dai SM, Tang GS et al (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products[J]. J Immunol 183(10):6244–6250

    CAS  PubMed  Google Scholar 

  26. Yu M, Wang H, Ding A et al (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2[J]. Shock 26(2):174–179

    Article  CAS  PubMed  Google Scholar 

  27. van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1)[J]. Angiogenesis 11(1):91–99

    Article  CAS  PubMed  Google Scholar 

  28. Kaltschmidt B, Kaltschmidt C (2003) NF-кB in the nervous system[M]//nuclear factor кB. Springer, Netherlands, pp 373–392

    Google Scholar 

  29. Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection[J]. Annu Rev Immunol 29:139–162

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Scientific Research and Technological Development Program Project of Guangxi Province (10124001A-32), the young science foundation of Guangxi Medical University (GXMUSF201206), and Innovation Project of Guangxi Graduate Education (YCBZ2013014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Liang or Yiqiang Chen.

Additional information

Yue Liang and Changchun Hou have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2656 kb)

(DOC 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Hou, C., Kong, J. et al. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem 405, 63–71 (2015). https://doi.org/10.1007/s11010-015-2396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2396-0

Keywords

Navigation