Skip to main content
Log in

Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Skeletal muscle tissue has a remarkable high regenerative capacity. The underlying cellular events are governed by complex signaling processes, and the proliferation of skeletal myoblasts is a key initial event. The role of nitric oxide (NO) in cell cycle regulation is well-appreciated. Nitrite, an NO oxidation product, is a stable source for NO-like bioactivity particularly in cases when oxygen shortage compromises NO-synthases activity. Although numerous studies suggest that nitrite effects are largely related to NO-dependent signaling, emerging evidence also implicates that nitrite itself can activate protein pathways albeit under physiological, normoxic conditions. This includes a recently demonstrated cyclic guanosine monophosphate-(cGMP)-independent enhancement of endothelial cell proliferation. Whether nitrite itself has the potential to affect myoblast proliferation and metabolism with or without activation of the canonical NO/cGMP pathway to subsequently support muscle cell regeneration is not known. Here we show that nitrite increases proliferation and metabolic activity of murine cultured myoblasts dose-dependently. This effect is not abolished by the NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimida-zoline-1-oxyl-3 oxide and does not affect intracellular cGMP levels, implicating a cGMP-independent mechanism. Nitrite circumvents the rapamycin induced attenuation of myoblast proliferation and enhances mTOR activity. Our results provide evidence for a novel potential physiological and therapeutic approach of nitrite in skeletal muscle regeneration processes under normoxia independent of NO and cGMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19:628–633

    Article  PubMed Central  PubMed  Google Scholar 

  2. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673

    Article  CAS  PubMed  Google Scholar 

  3. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zammit PS, Relaix F, Nagata Y et al (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    Article  CAS  PubMed  Google Scholar 

  5. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  6. Schultz E, Jaryszak DL (1985) Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech Ageing Dev 30:63–72

    Article  CAS  PubMed  Google Scholar 

  7. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435

    Article  CAS  PubMed  Google Scholar 

  8. Germani A, Di Carlo A, Mangoni A et al (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163:1417–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tatsumi R, Hattori A, Ikeuchi Y et al (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13:2909–2918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chakravarthy MV, Booth FW, Spangenburg EE (2001) The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats. Int J Sport Nutr Exerc Metab 11:S44–S48

    CAS  PubMed  Google Scholar 

  11. Zalin RJ (1987) The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Exp Cell Res 172:265–281

    Article  CAS  PubMed  Google Scholar 

  12. Ohanna M, Sobering AK, Lapointe T et al (2005) Atrophy of S6K1(−/−) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7:286–294

    Article  CAS  PubMed  Google Scholar 

  13. Halevy O, Cantley LC (2004) Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Exp Cell Res 297:224–234

    Article  CAS  PubMed  Google Scholar 

  14. Jones NC, Fedorov YV, Rosenthal RS et al (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–115

    Article  CAS  PubMed  Google Scholar 

  15. Conejo R, Lorenzo M (2001) Insulin signaling leading to proliferation, survival, and membrane ruffling in C2C12 myoblasts. J Cell Physiol 187:96–108

    Article  CAS  PubMed  Google Scholar 

  16. Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288–1291

    Article  CAS  PubMed  Google Scholar 

  17. Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  18. Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  CAS  PubMed  Google Scholar 

  19. Sengupta S, Peterson TR, Sabatini DM (2010) Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Madhusoodanan KS, Murad F (2007) NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem Res 32:681–694

    Article  CAS  PubMed  Google Scholar 

  22. Lincoln TM, Wu X, Sellak H et al (2006) Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front Biosci 11:356–367

    Article  CAS  PubMed  Google Scholar 

  23. Pilz RB, Broderick KE (2005) Role of cyclic GMP in gene regulation. Front Biosci 10:1239–1268

    Article  CAS  PubMed  Google Scholar 

  24. Soltow QA, Lira VA, Betters JL et al (2010) Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts. J Muscle Res Cell Motil 31:215–225

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Frizzell SA, Zhao X et al (2012) Normoxic cyclic GMP-independent oxidative signaling by nitrite enhances airway epithelial cell proliferation and wound healing. Nitric Oxide 26:203–210

    Article  PubMed  Google Scholar 

  26. Rammos C, Hendgen-Cotta UB, Sobierajski J et al (2014) Dietary nitrate reverses vascular dysfunction in old adults with moderately increased cardiovascular risk. J Am Coll Cardiol 63:1584–1585

    Article  CAS  PubMed  Google Scholar 

  27. Heiss C, Meyer C, Totzeck M et al (2012) Dietary inorganic nitrate mobilizes circulating angiogenic cells. Free Radic Biol Med 52:1767–1772

    Article  CAS  PubMed  Google Scholar 

  28. Lundberg JO, Gladwin MT, Ahluwalia A et al (2009) Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5:865–869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hendgen-Cotta U, Grau M, Rassaf T et al (2008) Reductive gas-phase chemiluminescence and flow injection analysis for measurement of the nitric oxide pool in biological matrices. Methods Enzymol 441:295–315

    Article  CAS  PubMed  Google Scholar 

  30. Rassaf T, Totzeck M, Hendgen-Cotta UB et al (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610

    Article  CAS  PubMed  Google Scholar 

  31. Totzeck M, Hendgen-Cotta UB, Luedike P et al (2012) Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation. Circulation 126:325–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hendgen-Cotta UB, Flogel U, Kelm M et al (2010) Unmasking the Janus face of myoglobin in health and disease. J Exp Biol 213:2734–2740

    Article  CAS  PubMed  Google Scholar 

  33. Hendgen-Cotta UB, Kelm M, Rassaf T (2010) A highlight of myoglobin diversity: the nitrite reductase activity during myocardial ischemia-reperfusion. Nitric Oxide 22:75–82

    Article  CAS  PubMed  Google Scholar 

  34. Hendgen-Cotta UB, Merx MW, Shiva S et al (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 105:10256–10261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Rassaf T, Flogel U, Drexhage C et al (2007) Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res 100:1749–1754

    Article  CAS  PubMed  Google Scholar 

  36. Totzeck M, Hendgen-Cotta UB, Kelm M et al (2014) Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia. PLoS One 9:e105951

    Article  PubMed Central  PubMed  Google Scholar 

  37. Totzeck M, Hendgen-Cotta UB, Rammos C et al (2012) Assessment of the functional diversity of human myoglobin. Nitric Oxide 26:211–216

    Article  CAS  PubMed  Google Scholar 

  38. Hendgen-Cotta UB, Luedike P, Totzeck M et al (2012) Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation 126:1983–1992

    Article  CAS  PubMed  Google Scholar 

  39. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  PubMed  Google Scholar 

  40. Leonhardt H, Rahn HP, Weinzierl P et al (2000) Dynamics of DNA replication factories in living cells. J Cell Biol 149:271–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ishiyama M, Miyazono Y, Sasamoto K et al (1997) A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44:1299–1305

    Article  CAS  PubMed  Google Scholar 

  42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  43. Ulibarri JA, Mozdziak PE, Schultz E et al (1999) Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro. In Vitro Cell Dev Biol Anim 35:215–218

    Article  CAS  PubMed  Google Scholar 

  44. Rassaf T, Bryan NS, Maloney RE et al (2003) NO adducts in mammalian red blood cells: too much or too little? Nat Med 9:481–482

    Article  CAS  PubMed  Google Scholar 

  45. Rassaf T, Preik M, Kleinbongard P et al (2002) Evidence for in vivo transport of bioactive nitric oxide in human plasma. J Clin Investig 109:1241–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Rassaf T, Kleinbongard P, Preik M et al (2002) Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical study on the fate of NO in human blood. Circ Res 91:470–477

    Article  CAS  PubMed  Google Scholar 

  47. Stamler JS, Simon DI, Jaraki O et al (1992) S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc Natl Acad Sci USA 89:8087–8091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Weerapana E, Wang C, Simon GM et al (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468:790–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Sarbassov DD, Ali SM, Sengupta S et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    Article  CAS  PubMed  Google Scholar 

  50. Luedike P, Hendgen-Cotta UB, Sobierajski J et al (2012) Cardioprotection through S-nitros(yl)ation of macrophage migration inhibitory factor. Circulation 125:1880–1889

    Article  CAS  PubMed  Google Scholar 

  51. Hamid SA, Totzeck M, Drexhage C et al (2010) Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res Cardiol 105:257–266

    Article  CAS  PubMed  Google Scholar 

  52. Ferri N (2012) AMP-activated protein kinase and the control of smooth muscle cell hyperproliferation in vascular disease. Vasc Pharmacol 56:9–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MT was supported by a scholarship from the German Heart Foundation (Deutsche Herzstiftung) and by a Grant from the Forschungskommission of the Medical Faculty of the University of Duesseldorf. AS is a scholar of the Studienstiftung des Deutschen Volkes. TR is a Heisenberg professor funded by the DFG (RA969/7-2). TR was supported by a grant from the DFG (RA969/4-2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike B. Hendgen-Cotta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Totzeck, M., Schicho, A., Stock, P. et al. Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells. Mol Cell Biochem 401, 175–183 (2015). https://doi.org/10.1007/s11010-014-2305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2305-y

Keywords

Navigation