Skip to main content
Log in

TCRP1 contributes to cisplatin resistance by preventing Pol β degradation in lung cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cisplatin (DDP) is the first-line chemotherapy drug widely used for the treatment of lung cancer patients, whereas the majority of cancer patients will eventually show resistance to DDP. The mechanisms responsible for DDP resistance are not fully understood. Tongue cancer resistance-associated protein 1 (TCRP1) gene was recently cloned and reported to specially mediate DDP resistance in human oral squamous cell carcinoma (OSCC) cells. However, the mechanisms of TCRP1-mediated DDP resistance are far from clear, and whether TCRP1 participates in DDP resistance in lung cancer cells remains unknown. Here, we show that TCRP1 contributes to DDP resistance in lung cancer cells. Knockdown of TCRP1 sensitizes the cells to DDP and increases the DDP-induced DNA damage. We have identified that Pol β is associated with DDP resistance, and Pol β knockdown delays the repair of DDP-induced DNA damage in A549/DDP cells. We find TCRP1 interacts with Pol β in lung cancer cells. Moreover, TCRP1 knockdown decreases the level of Pol β and increases the level of its ubiquitination. These results suggest that TCRP1 contributes to DDP resistance through the prevention of Pol β degradation in lung cancer cells. These findings provide new insights into chemoresistance and may contribute to prevention and reversal of DDP resistance in treatment of lung cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay JSI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. http://globocan.iarc.fr/Default.aspx

  2. Bray F, Ren JS, Masuyer E, Ferlay J (2013) Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 132:1133–1145

    Article  CAS  PubMed  Google Scholar 

  3. Novello S, Besse B, Felip E, Barlesi F, Mazieres J et al (2014) A phase II randomized study evaluating the addition of iniparib to gemcitabine plus cisplatin as first-line therapy for metastatic non-small cell lung cancer. Ann Oncol

  4. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP et al (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350:351–360

    Article  PubMed  Google Scholar 

  5. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  CAS  PubMed  Google Scholar 

  6. Enoiu M, Jiricny J, Scharer OD (2012) Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res 40:8953–8964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14:1291–1295

    Article  CAS  PubMed  Google Scholar 

  8. Dasari S, Bernard Tchounwou P (2014) Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 740C:364–378

    Article  Google Scholar 

  9. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G et al (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Stordal B, Davey M (2007) Understanding cisplatin resistance using cellular models. IUBMB Life 59:696–699

    Article  CAS  PubMed  Google Scholar 

  11. Shen DW, Pouliot LM, Hall MD, Gottesman MM (2012) Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 64:706–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gu Y, Fan S, Xiong Y, Peng B, Zheng G et al (2011) Cloning and functional characterization of TCRP1, a novel gene mediating resistance to cisplatin in an oral squamous cell carcinoma cell line. FEBS Lett 585:881–887

    Article  CAS  PubMed  Google Scholar 

  13. Peng B, Gu Y, Xiong Y, Zheng G, He Z (2012) Microarray-assisted pathway analysis identifies MT1X & NFkappaB as mediators of TCRP1-associated resistance to cisplatin in oral squamous cell carcinoma. PLoS ONE 7:e51413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gu Y, Fan S, Liu B, Zheng G, Yu Y et al (2011) TCRP1 promotes radioresistance of oral squamous cell carcinoma cells via Akt signal pathway. Mol Cell Biochem 357:107–113

    Article  CAS  PubMed  Google Scholar 

  15. Peng B, Yi S, Gu Y, Zheng G, He Z (2012) Purification and biochemical characterization of a novel protein-tongue cancer chemotherapy resistance-associated protein1 (TCRP1). Protein Expr Purif 82:360–367

    Article  CAS  PubMed  Google Scholar 

  16. Olive PL, Banath JP (2009) Kinetics of H2AX phosphorylation after exposure to cisplatin. Cytom B Clin Cytom 76:79–90

    Article  Google Scholar 

  17. Muid KA, Karakaya HC, Koc A (2014) Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process. Biochem Biophys Res Commun 444:260–263

    Article  CAS  PubMed  Google Scholar 

  18. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29

    Article  CAS  PubMed  Google Scholar 

  19. Kang TH, Lindsey-Boltz LA, Reardon JT, Sancar A (2010) Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc Natl Acad Sci U S A 107:4890–4895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Basu A, Krishnamurthy S (2010) Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids 2010

  21. Li K, Li W (2013) Association between polymorphisms of XRCC1 and ADPRT genes and ovarian cancer survival with platinum-based chemotherapy in Chinese population. Mol Cell Biochem 372:27–33

    Article  CAS  PubMed  Google Scholar 

  22. Freudenthal BD, Beard WA, Shock DD, Wilson SH (2013) Observing a DNA polymerase choose right from wrong. Cell 154:157–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Pei DS, Yang XJ, Liu W, Guikema JE, Schrader CE et al (2011) A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase beta. Nucleic Acids Res 39:3156–3165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sobol RW (2012) Genome instability caused by a germline mutation in the human DNA repair gene POLB. PLoS Genet 8:e1003086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bergoglio V, Canitrot Y, Hogarth L, Minto L, Howell SB et al (2001) Enhanced expression and activity of DNA polymerase beta in human ovarian tumor cells: impact on sensitivity towards antitumor agents. Oncogene 20:6181–6187

    Article  CAS  PubMed  Google Scholar 

  26. Iwatsuki M, Mimori K, Yokobori T, Tanaka F, Tahara K et al (2009) A platinum agent resistance gene, POLB, is a prognostic indicator in colorectal cancer. J Surg Oncol 100:261–266

    Article  CAS  PubMed  Google Scholar 

  27. Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL et al (2008) CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell 29:477–487

    Article  CAS  PubMed  Google Scholar 

  28. Parsons JL, Tait PS, Finch D, Dianova II, Edelmann MJ et al (2009) Ubiquitin ligase ARF-BP1/Mule modulates base excision repair. EMBO J 28:3207–3215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Parsons JL, Dianova II, Khoronenkova SV, Edelmann MJ, Kessler BM et al (2011) USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta. Mol Cell 41:609–615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Natural Science Foundation of China (30873088), Natural Science Foundation of Guangdong Province (S2012010008995), and Doctoral fund of Education Ministry of China (20124423110003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, C., Gu, Y. et al. TCRP1 contributes to cisplatin resistance by preventing Pol β degradation in lung cancer cells. Mol Cell Biochem 398, 175–183 (2015). https://doi.org/10.1007/s11010-014-2217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2217-x

Keywords

Navigation