Skip to main content
Log in

RETRACTED ARTICLE: TCRP1 promotes radioresistance of oral squamous cell carcinoma cells via Akt signal pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 24 April 2024

This article has been updated

Abstract

Tongue cancer resistance-associated protein 1 (TCRP1) is a novel gene located on human chromosome 11q13.4 which has been reported as a candidate related to chemotherapeutic resistance to cisplatin. Results suggest that TCRP also contribute to radioresistance in oral squamous cell carcinoma (OSCC) cells. We previously established exogenous overexpression of TCRP1 cell line Tca8113/TCRP1 and TCRP1 knockdown cell line Tca8113/PYM-siRNA and paired control cell lines, which provides a cell model system to investigate the roles and mechanisms of TCRP1-mediated radioresponse in OSCC. In this study, we first compared the radiosensitivity of up/down-regulating expression of TCRP1 cell lines and paired control cell lines by a clonogenic survival assay, Hoechst 33258 staining, cell growth assay, and comet assay. The results indicated that TCRP1 played a significant role in mediating OSCC radioresistance through decreased cells apoptosis and increased cellular proliferation and long-term survival. The further study found that TCRP1 function by up-regulating Akt activity and levels and then elevating the level of NF-κB. In summary, these results provided strong evidence for the linkage between TCRP1 and radiation sensitivity and may provide theoretical base of TCRP1 as a potential molecular mark of estimating the response for irradiation in OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52:195–215

    Article  PubMed  Google Scholar 

  2. Scully C, Bagan J (2009) Oral squamous cell carcinoma overview. Oral Oncol 45:301–308. doi:10.1016/j.oraloncology.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  3. de Araujo RF Jr, Barboza CA, Clebis NK, de Moura SA, Lopes Costa Ade L (2008) Prognostic significance of the anatomical location and TNM clinical classification in oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 13:E344–E347

    PubMed  Google Scholar 

  4. Mazeron R, Tao Y, Lusinchi A, Bourhis J (2009) Current concepts of management in radiotherapy for head and neck squamous-cell cancer. Oral Oncol 45:402–408. doi:10.1016/j.oraloncology.2009.01.010

    Article  PubMed  Google Scholar 

  5. Gu Y, Fan S, Xiong Y, Peng B, Zheng G, Yu Y, Ouyang Y, He Z (2011) Cloning and functional characterization of TCRP1, a novel gene mediating resistance to cisplatin in an oral squamous cell carcinoma cell line. FEBS Lett. doi:10.1016/j.febslet.2010.12.045

  6. Zheng G, Zhou M, Ou X, Peng B, Yu Y, Kong F, Ouyang Y, He Z (2010) Identification of carbonic anhydrase 9 as a contributor to pingyangmycin-induced drug resistance in human tongue cancer cells. FEBS J 277:4506–4518

    Article  CAS  PubMed  Google Scholar 

  7. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  8. Yang F, Zhou M, He Z, Liu X, Sun L, Sun Y, Chen Z (2007) High-yield expression in Escherichia coli of soluble human MT2A with native functions. Protein Expr Purif 53:186–194

    Article  CAS  PubMed  Google Scholar 

  9. Foray N, Arlett CF, Malaise EP (1997) Radiation-induced DNA double-strand breaks and the radiosensitivity of human cells: a closer look. Biochimie 79:567–575

    Article  CAS  PubMed  Google Scholar 

  10. Nunez MI, McMillan TJ, Valenzuela MT, Ruiz de Almodovar JM, Pedraza V (1996) Relationship between DNA damage, rejoining and cell killing by radiation in mammalian cells. Radiother Oncol 39:155–165

    Article  CAS  PubMed  Google Scholar 

  11. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29. doi:10.1038/nprot.2006.5

    Article  CAS  PubMed  Google Scholar 

  12. Chao X, Zao J, Xiao-Yi G, Li-Jun M, Tao S (2010) Blocking of PI3K/AKT induces apoptosis by its effect on NF-κB activity in gastric carcinoma cell line SGC7901. Biomed Pharmacother 64:600–604. doi:10.1016/j.biopha.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi J, Iwabuchi K, Miyagawa K, Sonoda E, Suzuki K, Takata M, Tauchi H (2008) Current topics in DNA double-strand break repair. J Radiat Res (Tokyo) 49:93–103

    Article  CAS  PubMed  Google Scholar 

  14. Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S, Hatanpaa KJ, Mickey B, Madden C, Maher E et al (2009) EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 69:4252–4259. doi:10.1158/0008-5472.CAN-08-4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K (2009) Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 8:730–738

    Article  CAS  PubMed  Google Scholar 

  16. An J, Chervin AS, Nie A, Ducoff HS, Huang Z (2007) Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor. Oncogene 26:652–661. doi:10.1038/sj.onc.1209830

    Article  CAS  PubMed  Google Scholar 

  17. Denmeade SR, Lin XS, Isaacs JT (1996) Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28:251–265. doi:10.1002/(SICI)1097-0045(199604)28:4<251:AID-PROS6>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  18. Papandile A, Tyas D, O’Malley DM, Warner CM (2004) Analysis of caspase-3, caspase-8 and caspase-9 enzymatic activities in mouse oocytes and zygotes. Zygote 12:57–64

    Article  CAS  PubMed  Google Scholar 

  19. Mazumder S, Plesca D, Almasan A (2008) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 414:13–21

    CAS  PubMed  Google Scholar 

  20. Choi HJ, Lee JH, Park SY, Cho JH, Han JS (2009) STAT3 is involved in phosphatidic acid-induced Bcl-2 expression in HeLa cells. Exp Mol Med 41:94–101. doi:20092285[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim SR, Bae MK, Kim JY, Wee HJ, Yoo MA, Bae SK (2009) Aspirin induces apoptosis through the blockade of IL-6-STAT3 signaling pathway in human glioblastoma A172 cells. Biochem Biophys Res Commun 387:342–347. doi:10.1016/j.bbrc.2009.07.022

    Article  CAS  PubMed  Google Scholar 

  22. Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, Sung B, Ichikawa H (2006) Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci 1091:151–169. doi:10.1196/annals.1378.063

    Article  CAS  PubMed  Google Scholar 

  23. Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, Kitada S, Reed JC (1996) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148:1567–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosser CJ, Reyes AO, Vakar-Lopez F, Levy LB, Kuban DA, Hoover DC, Lee AK, Pisters LL (2003) Bcl-2 is significantly overexpressed in localized radio-recurrent prostate carcinoma, compared with localized radio-naive prostate carcinoma. Int J Radiat Oncol Biol Phys 56:1–6

    Article  CAS  PubMed  Google Scholar 

  25. Park HS, Yun Y, Kim CS, Yang KH, Jeong M, Ahn SK, Jin YW, Nam SY (2009) A critical role for AKT activation in protecting cells from ionizing radiation-induced apoptosis and the regulation of acinus gene expression. Eur J Cell Biol 88:563–575. doi:10.1016/j.ejcb.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  26. Rafiee P, Binion DG, Wellner M, Behmaram B, Floer M, Mitton E, Nie L, Zhang Z, Otterson MF (2010) Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-{kappa}B. Am J Physiol Gastrointest Liver Physiol 298:G865–G877. doi:10.1152/ajpgi.00339.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liang J, Slingerland JM (2003) Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2:339–345

    Article  CAS  PubMed  Google Scholar 

  28. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227. doi:10.1038/ni0302-221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (30873088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin He.

Additional information

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11010-024-05015-y

About this article

Cite this article

Gu, Y., Fan, S., Liu, B. et al. RETRACTED ARTICLE: TCRP1 promotes radioresistance of oral squamous cell carcinoma cells via Akt signal pathway. Mol Cell Biochem 357, 107–113 (2011). https://doi.org/10.1007/s11010-011-0880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0880-8

Keywords

Navigation