Skip to main content
Log in

Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein kinase CK2 is a ubiquitous pro-survival kinase whose substrate targets are involved in various cellular processes. Crystal structure analysis confirmed constitutive activity of the kinase, yet CK2 activity regulation in the cell is still obscure. In-vitro studies suggest autoinhibitory aggregation of the hetero-tetrameric CK2 holoenzyme as a basis for CK2 regulation. In this study, we applied bioluminescent resonance energy transfer (BRET) technology to investigate CK2 holoenzyme aggregation in living cells. We designed a BRET2 pair consisting of the fusion proteins CK2α-Rluc8 and CK2α-GFP2. This BRET2 sensor reported specific interaction of CK2 holoenzyme complexes. Furthermore, the BRET2 sensor was applied to study modulators of CK2 aggregation. We found that CK2 aggregation is not static and can be influenced by the CK2-binding protein alpha subunit of the heterotrimeric G-protein that stimulates adenylyl cyclase (Gαs) and the polycationic compound polylysine. Gαs, but not the CK2 substrate β-arrestin2, decreased the BRET2 signal by up to 50 %. Likewise polylysine, but not the CK2 inhibitor DRB, decreased the signal in a dose-dependent manner up to 50 %. For the first time, we present direct experimental evidence for CK2 holoenzyme aggregates in the cell. Our data suggest that CK2 activity may be controlled by holoenzyme aggregation, to our knowledge a novel mechanism for protein kinase regulation. Moreover, the BRET2 sensor used in our study is a novel tool for studying CK2 regulation by aggregation and pharmacological screening for novel allosteric CK2 effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793:847–859

    Article  PubMed  CAS  Google Scholar 

  2. Poole A, Poore T, Bandhakavi S, McCann RO, Hanna DE, Glover CVC (2005) A global view of CK2 function and regulation. Mol Cell Biochem 274:163–170

    Article  PubMed  CAS  Google Scholar 

  3. Guerra B, Issinger OG (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15:1870–1886

    Article  PubMed  CAS  Google Scholar 

  4. Filhol O, Cochet C (2009) Cellular functions of protein kinase CK2: a dynamic affair. Cell Mol Life Sci 66:1830–1839

    Article  PubMed  CAS  Google Scholar 

  5. Trembley JH, Wang G, Unger G, Slaton J, Ahmed K (2009) CK2: a key player in cancer biology. Cell Mol Life Sci 66:1858–1867

    Article  PubMed  CAS  Google Scholar 

  6. Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 1804:499–504

    Article  PubMed  CAS  Google Scholar 

  7. Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 Å resolution. EMBO J 17:2451–2462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Nakaniwa T, Kinoshita T, Sekiguchi Y, Tada T, Nakanishi I, Kitaura K, Suzuki Y, Ohno H, Hirasawa A, Tsujimoto G (2009) Structure of human protein kinase CK2α2 with a potent indazole-derivative inhibitor. Acta Cryst 65:75–79

    CAS  Google Scholar 

  9. Bischoff N, Olsen BB, Raaf J, Bretner M, Issinger OG, Niefind K (2011) Structure of the human protein kinase CK2 catalytic subunit CK2α′ and interaction thermodynamics with the regulatory subunit CK2β. J Mol Biol 407:1–12

    Article  PubMed  CAS  Google Scholar 

  10. Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Grankowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits α and β from bacteria. Eur J Biochem 198:25–30

    Article  PubMed  CAS  Google Scholar 

  12. Meggio F, Boldyreff B, Marin O, Pinna LA, Issinger OG (1992) Role of the β subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem 204:293–297

    Article  PubMed  CAS  Google Scholar 

  13. Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key for its function? Cell Tissue Res 301:329–340

    Article  PubMed  CAS  Google Scholar 

  14. Montenarh M (2010) Cellular regulators of protein kinase CK2. Cell Tissue Res 342:139–146

    Article  PubMed  CAS  Google Scholar 

  15. Meggio F, Boldyreff B, Marin O, Marchiori F, Perich JW, Issinger OG, Pinna LA (1992) The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme. Eur J Biochem 205:939–945

    Article  PubMed  CAS  Google Scholar 

  16. Olsen BB, Petersen J, Issinger OG (2006) BID, an interaction partner of protein kinase CK2α. Biol Chem 387:441–449

    Article  PubMed  CAS  Google Scholar 

  17. Meggio F, Pinna LA (1984) Subunit structure and autophosphorylation mechanism of casein kinase-TS (type-2) from rat liver cytosol. Eur J Biochem 145:593–599

    Article  PubMed  CAS  Google Scholar 

  18. Pagano MA, Sarno S, Poletto G, Cozza G, Pinna LA, Meggio F (2005) Autophosphorylation at the regulatory β subunit reflects the supramolecular organization of protein kinase CK2. Mol Cell Biochem 274:23–29

    Article  PubMed  CAS  Google Scholar 

  19. Glover CVC (1986) A filamentous form of Drosophila caseine kinase II. J Biol Chem 261:14349–14354

    PubMed  CAS  Google Scholar 

  20. Valero E, De Bonis S, Filhol O, Wade RH, Langowski J, Chambaz EM, Cochet C (1995) Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with its catalytic activity. J Biol Chem 270:8345–8352

    Article  PubMed  CAS  Google Scholar 

  21. Niefind K, Issinger OG (2005) Primary and secondary interactions between CK2α and CK2β lead to ring-like structures in the crystals of the CK2 holoenzyme. Mol Cell Biochem 274:3–14

    Article  PubMed  CAS  Google Scholar 

  22. Lolli G, Pinna LA, Battistutta R (2012) Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS Chem Biol 7:1158–1163

    Article  PubMed  CAS  Google Scholar 

  23. Schnitzler A, Olsen BB, Issinger OG, Niefind K (2014) The protein kinase CK2Andante holoenzyme structure supports proposed models of autoregulation and trans-autophosphorylation. J Mol Biol 426:1871–1882

    Article  PubMed  CAS  Google Scholar 

  24. Drinovec L, Kubale V, Nøhr Larsen J, Vrecl M (2012) Mathematical models for quantitative assessment of bioluminescence resonance energy transfer: application to seven transmembrane receptors oligomerization. Front Endocrinol. doi:10.3389/fendo.2012.00104

    Google Scholar 

  25. De A, Loening AM, Gambhir SS (2007) An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects. Cancer Res 67:7175–7183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Loening AM, Fenn TD, Gambhir SS (2007) Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol 374:1017–1028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Dacres H, Wang J, Dumancic MM, Trowell SC (2010) Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs. Anal Chem 82:432–435

    Article  PubMed  CAS  Google Scholar 

  28. Dacres H, Michie M, Wang J, Pfleger KD, Trowell SC (2012) Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of bioluminescence resonance energy transfer (BRET). Biochem Biophys Res Commun 425:625–629

    Article  PubMed  CAS  Google Scholar 

  29. Svendsen AM, Vrecl M, Ellis TM, Heding A, Kristensen JB, Wade JD, Bathgate RA, De Meyts P, Nøhr J (2008) Cooperative binding of insulin-like peptide 3 to a dimeric relaxin family peptide receptor 2. Endocrinology 149:1113–1120

    Article  PubMed  CAS  Google Scholar 

  30. Kulahin N, Sanni SJ, Slaaby R, Nøhr J, Gammeltoft S, Hansen JL, Jorgensen R (2012) A BRET assay for monitoring insulin receptor interactions and ligand pharmacology. J Recept Signal Transduct Res 32:57–64

    Article  PubMed  CAS  Google Scholar 

  31. Guerra B, Issinger OG, Wang JY (2003) Modulation of human checkpoint kinase Chk1 by the regulatory β-subunit of protein kinase CK2. Oncogene 22:4933–4942

    Article  PubMed  CAS  Google Scholar 

  32. Vrecl M, Jorgensen R, Pogacnik A, Heding A (2004) Development of a BRET2 screening assay using β-arrestin 2 mutants. J Biomol Screen 9:322–333

    Article  PubMed  CAS  Google Scholar 

  33. Vrecl M, Drinovec L, Elling C, Heding A (2006) Opsin oligomerization in a heterologous cell system. J Recept Signal Transduct Res 26:505–526

    Article  PubMed  Google Scholar 

  34. Vrecl M, Nørregaard PK, Almholt DL, Elster L, Pogacnik A, Heding A (2009) β-Arrestin-based Bret2 screening assay for the “non”-β-Arrestin binding CB1 receptor. J Biomol Screen 14:371–380

    Article  PubMed  CAS  Google Scholar 

  35. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M (2002) Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277:44925–44931

    Article  PubMed  CAS  Google Scholar 

  36. Lin FT, Chen W, Shenoy S, Cong M, Exum ST, Lefkowitz RJ (2002) Phosphorylation of β-arrestin2 regulates its function in internalization of β2-adrenergic receptors. Biochemistry 41:10692–10699

    Article  PubMed  CAS  Google Scholar 

  37. Kim YM, Barak LS, Caron MG, Benovic JL (2002) Regulation of arrestin-3 phosphorylation by casein kinase II. J Biol Chem 277:16837–16846

    Article  PubMed  CAS  Google Scholar 

  38. Rebholz H, Nishi A, Liebscher S, Nairn AC, Flajolet M, Greengard P (2009) CK2 negatively regulates Gαs signaling. Proc Natl Acad Sci USA 106:14096–14101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Olsen BB, Rasmussen T, Niefind K, Issinger OG (2008) Biochemical characterization of CK2α and α′ paralogues and their derived holoenzymes: evidence for the existence of a heterotrimeric CK2α′-holoenzyme forming trimeric complexes. Mol Cell Biochem 316:37–47

    Article  PubMed  CAS  Google Scholar 

  40. Raaf J, Brunstein E, Issinger OG, Niefind K (2008) The CK2α/CK2β interface of human protein kinase CK2 harbors a binding pocket for small molecules. Chem Biol 15:111–117

    Article  PubMed  CAS  Google Scholar 

  41. Litchfield DW, Lozeman FJ, Cicirelli MF, Harrylock M, Ericsson LH, Piening CJ, Krebs EG (1991) Phosphorylation of the β subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 266:20380–20389

    PubMed  CAS  Google Scholar 

  42. Theis-Febvre N, Martel V, Laudet B, Souchier C, Grunwald D, Cochet C, Filhol O (2005) Highlighting protein kinase CK2 movement in living cells. Mol Cell Biochem 274:15–22

    Article  PubMed  CAS  Google Scholar 

  43. Damuni Z, Reed LJ (1988) Purification and properties of a protamine kinase and a type II casein kinase from bovine kidney mitochondria. Arch Biochem Biophys 262:574–584

    Article  PubMed  CAS  Google Scholar 

  44. Guerra B, Götz C, Wagner P, Montenarh M, Issinger OG (1997) The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene 14:2683–2688

    Article  PubMed  CAS  Google Scholar 

  45. Baltoumas FA, Theodoropoulou MC, Hamodrakas SJ (2013) Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J Struct Biol 182:209–218

    Article  PubMed  CAS  Google Scholar 

  46. Olsen BB, Boldyreff B, Niefind K, Issinger OG (2006) Purification and characterization of the CK2α′-based holoenzyme, an isozyme of CK2α: a comparative analysis. Protein Expr Purif 47:651–661

    Article  PubMed  CAS  Google Scholar 

  47. Meggio F, Boldyreff B, Issinger OG, Pinna LA (1994) Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the β-Subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33:4336–4342

    Article  PubMed  CAS  Google Scholar 

  48. Boldyreff B, Meggio F, Pinna LA, Issinger OG (1994) Efficient autophosphorylation and phosphorylation of the β-subunit by casein kinase-2 require the integrity of an acidic cluster 50 residues downstream from the phosphoacceptor site. J Biol Chem 269:4827–4831

    PubMed  CAS  Google Scholar 

  49. Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    Article  PubMed  CAS  Google Scholar 

  50. Hathaway GM, Traugh JA (1979) Cyclic nucleotide-independent protein kinases from rabbit reticulocytes. Purification of casein kinases. J Biol Chem 254:762–768

    PubMed  CAS  Google Scholar 

  51. Niefind K, Yde CW, Ermakova I, Issinger OG (2007) Evolved to be active: sulfate ions define substrate recognition sites of CK2α and emphasize its exceptional role within the CMGC family of eukaryotic kinases. J Mol Biol 370:427–430

    Article  PubMed  CAS  Google Scholar 

  52. Boldyreff B, Meggio F, Pinna LA, Issinger OG (1993) Reconstitution of normal and hyperactivated forms of casein kinase-2 by variably mutated β-subunits. Biochemistry 32:12672–12677

    Article  PubMed  CAS  Google Scholar 

  53. Rasmussen T, Skjøth IH, Jensen HH, Niefind K, Boldyreff B, Issinger OG (2005) Biochemical characterization of the recombinant human Drosophila homologues Timekeeper and Andante involved in the Drosophila circadian oscillator. Mol Cell Biochem 274:151–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Grants from the Danish Cancer Society (OGI 252-1109-210), the Danish Research Council (OGI 21-04-0517), the Slovenian Research Agency program (M. Vrecl P4-0053), and the Deutsche Forschungsgemeinschaft (NI 643/4-1). We thank Hans H. Jensen for cloning of CK2α-MycHis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf-Georg Issinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hübner, G.M., Larsen, J.N., Guerra, B. et al. Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET2 . Mol Cell Biochem 397, 285–293 (2014). https://doi.org/10.1007/s11010-014-2196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2196-y

Keywords

Navigation