Skip to main content

Advertisement

Log in

MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Prostate carcinoma is the most common cancer for men and among the leading cancer-related causes. Many evidences have shown that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) potently induces apoptosis in cancer cells, and thus, is a promising biologic agent for prostate carcinoma therapy. However, TRAIL expression mediated by the current vectors lacks tumor specificity, thereby exerting cytotoxicity to normal cells. To solve this problem, we inserted miRNA response elements (MREs), miR-143 and miR-145, expression levels of which were reduced in prostate carcinoma, as well as that of miR-122, which is specifically expressed in hepatic cells, into adenoviral vectors to control TRAIL expression (Ad-TRAIL-M3). qPCR data confirmed that miR-143, miR-145, and miR-122 levels were all decreased in prostate carcinoma cell lines and prostate cancer samples from patients. Luciferase assays showed that MREs-regulated luciferase expression was potently suppressed in normal cells, but not in prostate cancer cells. Ad-TRAIL-M3, which expresses TRAIL in a MREs-regulated manner, produced high level of TRAIL and suppressed the survival of prostate cancer cells by inducing apoptosis, while Ad-TRAIL-M3 had no TRAIL expression in normal cells and thus exerted no cytotoxicity to them. The studies on PC-3 tumor xenograft in mice further confirmed that Ad-TRAIL-M3 was able to inhibit the growth of tumors and possessed high biosafety. In conclusion, we successfully generated an adenoviral vector that expresses TRAIL in miRNA-regulated mechanism. This miRNA-based gene therapy may be promising for prostate carcinoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baade PD, Youlden DR, Krnjacki LJ (2009) International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res 53:171–184

    Article  CAS  PubMed  Google Scholar 

  2. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61:212–236

    Article  PubMed  Google Scholar 

  3. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  CAS  PubMed  Google Scholar 

  4. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818

    Article  CAS  PubMed  Google Scholar 

  5. Huang Y, Sheikh MS (2007) TRAIL death receptors and cancer therapeutics. Toxicol Appl Pharmacol 224:284–289

    Article  CAS  PubMed  Google Scholar 

  6. Hesry V, Piquet-Pellorce C, Travert M, Donaghy L, Jegou B, Patard JJ, Guillaudeux T (2006) Sensitivity of prostate cells to TRAIL-induced apoptosis increases with tumor progression: DR5 and caspase 8 are key players. Prostate 66:987–995

    Article  CAS  PubMed  Google Scholar 

  7. Yu R, Mandlekar S, Ruben S, Ni J, Kong AN (2000) Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in androgen-independent prostate cancer cells. Cancer Res 60:2384–2389

    CAS  PubMed  Google Scholar 

  8. Chen Q, Lou W, Shen J, Ma L, Yang Z, Liu L, Luo J, Qian C (2010) Potent antitumor activity in experimental hepatocellular carcinoma by adenovirus-mediated coexpression of TRAIL and shRNA against COX-2. Clin Cancer Res 16:3696–3705

    Article  CAS  PubMed  Google Scholar 

  9. Griffith TS, Broghammer EL (2001) Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther 4:257–266

    Article  CAS  PubMed  Google Scholar 

  10. Sanlioglu AD, Karacay B, Koksal IT, Griffith TS, Sanlioglu S (2007) DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells. Cancer Gene Ther 14:976–984

    Article  CAS  PubMed  Google Scholar 

  11. Jimenez JA, Li X, Zhang YP, Bae KH, Mohammadi Y, Pandya P, Kao C, Gardner TA (2010) Antitumor activity of Ad-IU2, a prostate-specific replication-competent adenovirus encoding the apoptosis inducer, TRAIL. Cancer Gene Ther 17:180–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vanoosten RL, Moore JM, Ludwig AT, Griffith TS (2005) Depsipeptide (FR901228) enhances the cytotoxic activity of TRAIL by redistributing TRAIL receptor to membrane lipid rafts. Mol Ther 11:542–552

    Article  CAS  PubMed  Google Scholar 

  13. Kasman L, Lu P, Voelkel-Johnson C (2007) The histone deacetylase inhibitors depsipeptide and MS-275, enhance TRAIL gene therapy of LNCaP prostate cancer cells without adverse effects in normal prostate epithelial cells. Cancer Gene Ther 14:327–334

    Article  CAS  PubMed  Google Scholar 

  14. Armeanu S, Lauer UM, Smirnow I, Schenk M, Weiss TS, Gregor M, Bitzer M (2003) Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligand overcomes an impaired response of hepatoma cells but causes severe apoptosis in primary human hepatocytes. Cancer Res 63:2369–2372

    CAS  PubMed  Google Scholar 

  15. Corazza N, Jakob S, Schaer C, Frese S, Keogh A, Stroka D, Kassahn D, Torgler R, Mueller C, Schneider P, Brunner T (2006) TRAIL receptor-mediated JNK activation and Bim phosphorylation critically regulate Fas-mediated liver damage and lethality. J Clin Investig 116:2493–2499

    Article  CAS  PubMed  Google Scholar 

  16. Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12

    Article  CAS  PubMed  Google Scholar 

  17. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    Article  CAS  PubMed  Google Scholar 

  18. Catto JW, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, Hamdy FC, Kallioniemi O, Mengual L, Schlomm T, Visakorpi T (2011) MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 59:671–681

    Article  CAS  PubMed  Google Scholar 

  19. Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stohr R, Hartmann A, Wullich B, Grasser F (2010) The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8:529–538

    Article  CAS  PubMed  Google Scholar 

  20. Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T, Dyrskjot L, Eltze E, Wieland W, Keck B, Ekici AB, Grasser F, Wullich B (2012) MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 130:611–621

    Article  CAS  PubMed  Google Scholar 

  21. Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Camara-Lopes LH, Srougi M (2013) MicroRNA expression profiles in the progression of prostate cancer-from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol 31:796–801

    Article  CAS  PubMed  Google Scholar 

  22. Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, Avances C, Villalba M, Culine S, Fajas L (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4:e7542

    Article  PubMed Central  PubMed  Google Scholar 

  23. Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, Li P, Zhang W, Wu H, Feng N, Wang Z, Hua L, Wang X (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 350:207–213

    Article  CAS  PubMed  Google Scholar 

  24. Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D, Chen S, Lai Y, Du H, Chen G, Liu G, Tang Y, Huang S, Zou X (2011) Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 6:e20341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wu D, Huang P, Wang L, Zhou Y, Pan H, Qu P (2013) MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer. Mol Med Rep 8:626–630

    PubMed  Google Scholar 

  26. Ozen M, Creighton CJ, Ozdemir M, Ittmann M (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Tang H, Thayanithy V, Subramanian S, Oberg AL, Cunningham JM, Cerhan JR, Steer CJ, Thibodeau SN (2009) Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res 69:9490–9497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Avgeris M, Stravodimos K, Fragoulis EG, Scorilas A (2013) The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Br J Cancer 108:2573–2581

    Article  CAS  PubMed  Google Scholar 

  29. Hart M, Wach S, Nolte E, Szczyrba J, Menon R, Taubert H, Hartmann A, Stoehr R, Wieland W, Grasser FA, Wullich B (2013) The proto-oncogene ERG is a target of microRNA miR-145 in prostate cancer. FEBS J 280:2105–2116

    Article  CAS  PubMed  Google Scholar 

  30. Ren D, Wang M, Guo W, Zhao X, Tu X, Huang S, Zou X, Peng X (2013) Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR145. Int J Oncol 42:1473–1481

    CAS  PubMed  Google Scholar 

  31. Guo W, Ren D, Chen X, Tu X, Huang S, Wang M, Song L, Zou X, Peng X (2013) HEF1 promotes epithelial mesenchymal transition and bone invasion in prostate cancer under the regulation of microRNA-145. J Cell Biochem 114:1606–1615

    Article  CAS  PubMed  Google Scholar 

  32. Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S, Majid S, Liu J, Khatri G, Tanaka Y, Dahiya R (2010) The functional significance of microRNA-145 in prostate cancer. Br J Cancer 103:256–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Naya Y, Ichikawa T, Seki N (2011) Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol 38:1093–1101

    CAS  PubMed  Google Scholar 

  34. Dash R, Azab B, Shen XN, Sokhi UK, Sarkar S, Su ZZ, Wang XY, Claudio PP, Dent P, Dmitriev IP, Curiel DT, Grant S, Sarkar D, Fisher PB (2011) Developing an effective gene therapy for prostate cancer: new technologies with potential to translate from the laboratory into the clinic. Discov Med 11:46–56

    PubMed  Google Scholar 

  35. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166–1176

    CAS  PubMed  Google Scholar 

  36. Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, Tanaka Y, Dahiya R (2011) MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 32:772–778

    Article  CAS  PubMed  Google Scholar 

  37. Huang S, Guo W, Tang Y, Ren D, Zou X, Peng X (2012) miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol Rep 28:1831–1837

    CAS  PubMed  Google Scholar 

  38. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104

    Article  CAS  PubMed  Google Scholar 

  39. Ma L, Liu J, Shen J, Liu L, Wu J, Li W, Luo J, Chen Q, Qian C (2010) Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther 9:554–561

    Article  CAS  PubMed  Google Scholar 

  40. Bo Y, Guo G, Yao W (2013) MiRNA-mediated tumor specific delivery of TRAIL reduced glioma growth. J Neurooncol 112:27–37

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Li Y, Wang L, Yang H, Wang Q, Qi H, Li S, Zhou P, Liang P, Wang Q, Li X (2013) microRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer. J Exp Clin Cancer Res 32:10

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Ma L, Li C, Zhang Z, Yang G, Zhang W (2013) Tumor-targeting TRAIL expression mediated by miRNA response elements suppressed growth of uveal melanoma cells. Mol Oncol. doi:10.1016/j.molonc.2013.08.003

    Google Scholar 

  43. Jin H, Lv S, Yang J, Wang X, Hu H, Su C, Zhou C, Li J, Huang Y, Li L, Liu X, Wu M, Qian Q (2011) Use of microRNA Let-7 to control the replication specificity of oncolytic adenovirus in hepatocellular carcinoma cells. PLoS One 6:e21307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zhang Z, Zhang X, Newman K, Liu X (2012) MicroRNA regulation of oncolytic adenovirus 6 for selective treatment of castration-resistant prostate cancer. Mol Cancer Ther 11:2410–2418

    Article  CAS  PubMed  Google Scholar 

  45. Wang B, Liu J, Ma LN, Xiao HL, Wang YZ, Li Y, Wang Z, Fan L, Lan C, Yang M, Hu L, Wei Y, Bian XW, Chen D, Wang J (2013) Chimeric 5/35 adenovirus-mediated Dickkopf-1 overexpression suppressed tumorigenicity of CD44(+) gastric cancer cells via attenuating Wnt signaling. J Gastroenterol 48:798–808

    Article  CAS  PubMed  Google Scholar 

  46. Lou W, Chen Q, Ma L, Liu J, Yang Z, Shen J, Cui Y, Bian XW, Qian C (2013) Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med (Berl) 91:715–725

    Article  CAS  Google Scholar 

  47. He X, Liu J, Yang C, Su C, Zhou C, Zhang Q, Li L, Wu H, Liu X, Wu M, Qian Q (2011) 5/35 fiber-modified conditionally replicative adenovirus armed with p53 shows increased tumor-suppressing capacity to breast cancer cells. Hum Gene Ther 22:283–292

    Article  CAS  PubMed  Google Scholar 

  48. Lub-de Hooge MN, de Vries EG, de Jong S, Bijl M (2005) Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis 64:854–858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Zhao at the General Hospital of Chengdu Military Area Command of Chinese PLA, Chengdu, China. for his kind gift of adenoviral vector, Ad-TRAIL, and Ad-EGFP.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, W., Jin, N., Fan, L. et al. MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells. Mol Cell Biochem 388, 123–133 (2014). https://doi.org/10.1007/s11010-013-1904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1904-3

Keywords

Navigation