Skip to main content
Log in

Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

It has been demonstrated that numerous microRNAs (miRNAs) have potent tumor-suppressing effects on a variety of cancers, implicating a possible application of miRNA in tumor therapy. Oncolytic adenovirus is a suitable vector to deliver tumor suppressor genes for treatment of cancers. However, it remains unknown whether co-expression of tumor suppressor genes and miRNAs can contribute to a more potent antitumor capacity within an oncolytic adenovirus delivery system. In this study, we found that expression of miRNA-34a was reduced in hepatocellular carcinoma (HCC), and the reduced expression of miRNA-34a was associated with worse outcome of HCC patients. Thus, we developed an oncolytic adenoviral vector, AdCN205, to co-express miRNA-34a and IL-24 driven by an adenovirus endogenous E3 promoter in HCC cells. High levels of miRNA-34a and IL-24 expression were detected in AdCN205-IL-24-miR-34a-infected HCC cells. AdCN205-IL-24-miR-34a significantly induced dramatic antitumor activity, as compared with that induced by AdCN205-IL-24 or AdCN205-miR-34a alone. Transfer of miRNA-34a into HCC cells inhibited the expression of its target genes, Bcl-2 and SIRT1. Treatment of established xenograft HCC tumors with AdCN205-IL-24-miR-34a in a mouse model resulted in complete tumor regression without recurrence. Taken together, our data provide a promising and reasonable delivery strategy of double-aimed cancer therapy, in which miRNAs and tumor-suppressing genes are used simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T et al (2010) A microRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  PubMed  CAS  Google Scholar 

  2. Dykxhoorn DM (2010) MicroRNAs and metastasis: little RNAs go a long way. Cancer Res 70:6401–6406

    Article  PubMed  CAS  Google Scholar 

  3. Elyakim E, Sitbon E, Faerman A, Tabak S, Montia E, Belanis L, Dov A, Marcusson EG, Bennett CF, Chajut A et al (2010) hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res 70:8077–8087

    Article  PubMed  CAS  Google Scholar 

  4. Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, Pollutri D, Croce CM, Bolondi L, Gramantieri L (2010) MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 70:5184–5193

    Article  PubMed  CAS  Google Scholar 

  5. Huang J, Wang Y, Guo Y, Sun S (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52:60–70

    Article  PubMed  CAS  Google Scholar 

  6. Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, Yao J, Yan M, Li J, Yao M et al (2010) MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52:1731–1740

    Article  PubMed  CAS  Google Scholar 

  7. Luedde T (2010) MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma. Hepatology 52:1164–1166

    Article  PubMed  Google Scholar 

  8. Wong QW, Ching AK, Chan AW, Choy KW, To KF, Lai PB, Wong N (2010) MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 16:867–875

    Article  PubMed  CAS  Google Scholar 

  9. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51:836–845

    PubMed  CAS  Google Scholar 

  10. Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, Man K, Ng IO (2011) The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology 140:322–331

    Article  PubMed  CAS  Google Scholar 

  11. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH et al (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50:472–480

    Article  PubMed  CAS  Google Scholar 

  12. He L, He X, Lowe SW, Hannon GJ (2007) microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 7:819–822

    Article  PubMed  CAS  Google Scholar 

  13. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  PubMed  CAS  Google Scholar 

  14. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105:13421–13426

    Article  PubMed  CAS  Google Scholar 

  15. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104:15472–15477

    Article  PubMed  CAS  Google Scholar 

  16. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275:44–53

    Article  PubMed  CAS  Google Scholar 

  17. Chen J, Zhang B, Wong N, Lo AW, To KF, Chan AW, Ng MH, Ho CY, Cheng SH, Lai PB et al (2011) Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res 71:4138–4149

    Article  PubMed  CAS  Google Scholar 

  18. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  PubMed  CAS  Google Scholar 

  19. Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–585

    Article  PubMed  CAS  Google Scholar 

  20. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW, Weinberg RA (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    Article  PubMed  CAS  Google Scholar 

  21. Qian C, Liu XY, Prieto J (2006) Therapy of cancer by cytokines mediated by gene therapy approach. Cell Res 16:182–188

    Article  PubMed  CAS  Google Scholar 

  22. Ma L, Liu J, Shen J, Liu L, Wu J, Li W, Luo J, Chen Q, Qian C (2010) Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther 9:554–561

    Article  PubMed  CAS  Google Scholar 

  23. Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, Liu J, Cui Y, Bian X, Bie P et al (2011) MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett 310:160–169

    PubMed  CAS  Google Scholar 

  24. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  PubMed  CAS  Google Scholar 

  25. Luo J, Xia Q, Zhang R, Lv C, Zhang W, Wang Y, Cui Q, Liu L, Cai R, Qian C (2008) Treatment of cancer with a novel dual-targeted conditionally replicative adenovirus armed with mda-7/IL-24 gene. Clin Cancer Res 14:2450–2457

    Article  PubMed  CAS  Google Scholar 

  26. Nettelbeck DM (2008) Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med 86:363–377

    Article  PubMed  Google Scholar 

  27. Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, Curiel DT, Fisher PB (2007) Melanoma differentiation associated gene-7 (mda-7)/IL-24: a ‘magic bullet’ for cancer therapy? Expert Opin Biol Ther 7:577–586

    Article  PubMed  CAS  Google Scholar 

  28. Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L, Wang Y, Zhang J, Zhang Z, Huiwang J et al (2005) Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 16:845–858

    Article  PubMed  CAS  Google Scholar 

  29. Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB (2003) Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene 22:8758–8773

    Article  PubMed  CAS  Google Scholar 

  30. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  31. Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, Winkler D, Durig J, van Oers MH, Mertens D et al (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113:3801–3808

    Article  PubMed  CAS  Google Scholar 

  32. Chen Q, Lou W, Shen J, Ma L, Yang Z, Liu L, Luo J, Qian C (2010) Potent antitumor activity in experimental hepatocellular carcinoma by adenovirus-mediated coexpression of TRAIL and shRNA against COX-2. Clin Cancer Res 16:3696–3705

    Article  PubMed  CAS  Google Scholar 

  33. Samakoglu S, Lisowski L, Budak-Alpdogan T, Usachenko Y, Acuto S, Di Marzo R, Maggio A, Zhu P, Tisdale JF, Riviere I et al (2006) A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat Biotechnol 24:89–94

    Article  PubMed  CAS  Google Scholar 

  34. Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W, Wang Y, He L, Qian C, Qian Q et al (2006) The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 13:1011–1022

    Article  PubMed  CAS  Google Scholar 

  35. Kaliberova LN, Krendelchtchikova V, Harmon DK, Stockard CR, Petersen AS, Markert JM, Gillespie GY, Grizzle WE, Buchsbaum DJ, Kaliberov SA (2009) CRAdRGDflt-IL24 virotherapy in combination with chemotherapy of experimental glioma. Cancer Gene Ther 16:794–805

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from National Natural Sciences Foundation of China (30872984, 81020108026, and 81090423) and National Basic Research Program of China (973 Program, no. 2010CB529406).

Disclosure statement

All authors have no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, W., Chen, Q., Ma, L. et al. Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med 91, 715–725 (2013). https://doi.org/10.1007/s00109-012-0985-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0985-x

Keywords

Navigation