Skip to main content
Log in

Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the influence of N-acetylcysteine (NAC) on cadmium (Cd) poisoning by evaluating Cd concentration in tissues, hematological indices as well as the activity of NTPDase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes of rats exposed to Cd and co-treated with NAC. For this purpose, the rats received Cd (2 mg/kg) and NAC (150 mg/kg) by gavage every other day for 30 days. Animals were divided into four groups (n = 6–8): control/saline, NAC, Cd, and Cd/NAC. Cd exposure increased Cd concentration in plasma, spleen and thymus, and NAC co-treatment modulated this augment in both lymphoid organs. Cd exposure reduced red blood cell count, hemoglobin content and hematocrit value. Cd intoxication caused a decrease in total white blood cell count. NAC treatment per se caused an increase in lymphocyte and a decrease in neutrophil counts. On contrary, Cd exposure caused a decrease in lymphocyte and an increase in neutrophil and monocyte counts. NAC reversed or ameliorated the hematological impairments caused by Cd poisoning. There were no significant alterations in the NTPDase activity in lymphocytes of rats treated with Cd and/or NAC. Cd caused a decrease in the activities of lymphocyte AChE, whole blood AChE and serum BChE. However, NAC co-treatment was inefficient in counteracting the negative effect of Cd in the cholinesterase activities. The present investigation provides ex vivo evidence supporting the hypothesis that Cd induces immunotoxicity by interacting with the lymphoid organs, altering hematological parameters and inhibiting peripheral cholinesterase activity. Also, it highlights the possibility to use NAC as adjuvant against toxicological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aito M-J (2005) N-Acetylcysteine—passe-partout or much ado about nothing? Br J Clin Pharmacol 61:5–15

    Article  Google Scholar 

  • Aremu DA, Madejczyk MS, Ballatori N (2008) N-Acetylcysteine as a potential antidote and biomonitoring agent of methylmercury exposure. Environ Health Perspect 116:26–31

    Article  PubMed  CAS  Google Scholar 

  • Arrieta O, Palencia G, García-Arenas G, Morales-Espinosa D, Hernández-Pedro N, Sotelo J (2005) Prolonged exposure to lead lowers the threshold of pentylenetetrazole-induced seizures in rats. Epilepsia 46:1599–1602

    Article  PubMed  CAS  Google Scholar 

  • Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW (1996) In vivo antioxidant treatment suppresses nuclear factor-k B activation and neutrophilic lung inflammation. J Immunol 157:1630–1637

    PubMed  CAS  Google Scholar 

  • Boeck AT, Schopfer LM, Lockridge O (2002) DNA sequence of butyrylcholinesterase from the rat: expression of the protein and characterization of the properties of rat butyrylcholinesterase. Biochem Pharmacol 63:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Borges LP, Brandão R, Godoi B, Nogueira CW, Zeni G (2008) Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats. Chem Biol Interact 171:15–25

    Article  PubMed  CAS  Google Scholar 

  • Bours M, Swennen E, Di Virgilio F, Cronstein B, Dagnelie P (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  PubMed  CAS  Google Scholar 

  • Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest 97:77–89

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:218–254

    Article  Google Scholar 

  • Carvalho M, Remião F, Milhazes N, Borges F, Fernandes E, Carvalho F, Bastos ML (2004) The toxicity of N-methyl-α-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology 200:193–203

    Article  PubMed  CAS  Google Scholar 

  • Casalino E, Sblano S, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346:171–179

    Article  PubMed  CAS  Google Scholar 

  • Chan K, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-ATPase activity. Anal Biochem 157:375–378

    Article  PubMed  CAS  Google Scholar 

  • Czura CJ, Tracey KJ (2005) Autonomic neural regulation of immunity. J Intern Med 257:156–166

    Article  PubMed  CAS  Google Scholar 

  • Da Silva AS, Monteiro SG, Gonçalves JF, Spanevello R, Schmatz R, Oliveira CB, Costa MM, França RT, Jaques JAS, Schetinger MRC, Mazzanti CM, Lopes STA (2011) Trypanosoma evansi: immune response and acetylcholinesterase activity in lymphocytes from infected rats. Exp Parasitol 127:475–480

    Article  PubMed  Google Scholar 

  • Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13:214–221

    Google Scholar 

  • Dombrowski KE, Ke Y, Brewer KA, Kapp JA (1998) Ecto-ATPase: an activation marker necessary for effector cell function. Immunol Rev 161:111–118

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Shen H-M, Ong C-N (2001) Cadmium-induced apoptosis and phenotypic changes in mouse thymocytes. Mol Cell Biochem 222:11–20

    Article  PubMed  CAS  Google Scholar 

  • Dwyer K, Deaglio S, Gao W, Friedman D, Strom T, Robson S (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180

    Article  PubMed  CAS  Google Scholar 

  • El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Cadmium induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and b-carotene. Food Chem Toxicol 42:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney DK, Andres V, Flatherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald BB, Costa LG (1993) Modulation of muscarinic receptors an acetylcholinesterase activity in lymphocytes and brain areas following repeated organophosphate exposure in rats. Fundam Appl Toxicol 20:210–216

    Article  PubMed  CAS  Google Scholar 

  • Garcia SC, Wyse ATS, Valentini J, Roehrs M, Moro AM, Paniz C, Schmitt G, Grotto D, Pomblum VJ (2008) Butyrylcholinesterase activity is reduced in haemodialysis patients: is there association with hyperhomocysteinemia and/or oxidative stress? Clin Biochem 41:474–479

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM, Schetinger MRC (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60

    Article  PubMed  Google Scholar 

  • Grinberg L, Fibach E, Amer J, Atlas D (2005) N-acetylcysteine amide, a novel cell permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med 38:136–145

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Tanimoto A, Arima N, Ide Y, Sasaguri T, Shimajiri S, Sasaguri Y (1998) Altered membrane skeleton of red blood cells participates in cadmium-induced anemia. Biochem Mol Biol Int 45:841–847

    PubMed  CAS  Google Scholar 

  • Jaques JAS, Rezer JFP, Ruchel JB, Becker LV, Rosa CS, Souza VCG, Luza SCA, Gutierres JM, Gonçalves JF, Morsch VM, Schetinger MRC, Leal DBR (2011) Lung and blood lymphocytes NTPDase and acetylcholinesterase activity in cigarette smoke-exposed rats treated with curcumin. Biom Prev Nutr 1:109–115

    Article  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  • Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health 42:1–52

    Google Scholar 

  • Kaizer RR, Gutierres JM, Schmatz R, Spanevello RM, Morsch VM, Schetinger MRC, Rocha JBT (2010) In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cell Immunol 265:133–138

    Article  PubMed  CAS  Google Scholar 

  • Karmakar R, Bhatttacharya R, Chatteriee M (2000) Biochemical, haematological and histopathological study in relation to time related cadmium-induced hepatotoxicity in mice. Biometals 13:231–239

    Article  PubMed  CAS  Google Scholar 

  • Kawashima K, Fujii T (2003) The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 74:675–696

    Article  PubMed  CAS  Google Scholar 

  • Klapcinska B, Poprzecki S, Dolezych B, Kimsa E (2000) Cadmium induced changes in hematology and 2,3-DPG levels in rats. Bull Environ Contam Toxicol 64:93–99

    Article  PubMed  CAS  Google Scholar 

  • Lafuente A, González-Carracedo A, Esquino AI (2004) Differential effects of cadmium on blood lymphocyte subsets. Biometal 17:451–546

    Article  CAS  Google Scholar 

  • Leal D, Streher C, Neu T, Bittencourt F, Leal C, Silva J, Morsch V, Schetinger MRC (2005) Characterization of NTPDase (NTPDase 1: ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta 1721:9–11

    Article  PubMed  CAS  Google Scholar 

  • Leal DBR, Schetinger MRC, Leal CAM, Bertoncheli CM, Morsch VM (2011) NTPDase activity in human lymphocytes is not affected by therapeutic doses of anti-HIV drugs. Biomed Pharmacother 65:594–596

    Article  PubMed  CAS  Google Scholar 

  • Linden J (2006) New insights into the regulation of inflammation by adenosine. J Clin Invest 116:1835–1837

    Article  PubMed  CAS  Google Scholar 

  • Luchese C, Zeni G, Rocha JBT, Nogueira CW, Santos FW (2007) Cadmium inhibits δ-aminolevulinate dehydratase from rat lung in vitro: interaction with chelating and antioxidant agents. Chem Biol Interact 165:127–137

    Article  PubMed  CAS  Google Scholar 

  • Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR, Massa E, Mocci M, Serpe R (2003) Antioxidant agents are effective in including lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med 81:664–673

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Lockridge O (2010) Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 494:107–120

    Article  PubMed  CAS  Google Scholar 

  • Mazzanti CM, Spanevello R, Ahmed M, Pereira LB, Gonçalves JF, Corrêa M, Schmatz R, Stefanello N, Leal DBR, Mazzanti A, Ramos AT, Martins TB, Danesi CC, Graça DL, Morsch VM, Schetinger MRC (2009) Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents. Int J Dev Neurosci 27:73–80

    Article  PubMed  CAS  Google Scholar 

  • Mesdaghinia A, Yazdanpanah H, Seddighi M, Banafshe HR, Heydari A (2010) Effect of short-term lead exposure on PTZ-induced seizure threshold in mice. Toxicol Lett 199:6–9

    Article  PubMed  CAS  Google Scholar 

  • Messaoudi I, Hammouda F, El Heni J, Baati T, Said K, Kerkeni A (2010) Reversal of cadmium-induced oxidative stress in rat erythrocytes by selenium, zinc or their combination. Exp Toxicol Pathol 62:281–288

    Article  PubMed  CAS  Google Scholar 

  • Nemmiche S, Chabane-Sari D, Guiraud P (2007) Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat’s blood, liver and brain. Chem Biol Interact 170:221–230

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    Article  PubMed  CAS  Google Scholar 

  • Ognjanovic BI, Pavlovic SZ, Maletic SD, Ikic RV, Tajn A, Radojicic RM, Saicic ZS, Petrovic VM (2003) Protective Influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiol Res 52:563–570

    PubMed  CAS  Google Scholar 

  • Pari L, Murugavel P (2005) Role of diallyl tetrasulfide in ameliorating the cadmium induced biochemical changes in rats. Environ Toxicol Pharmacol 20:493–500

    Article  PubMed  CAS  Google Scholar 

  • Pathak N, Khandelwal S (2006a) Influence of cadmium on murine thymocytes: potentiation of apoptosis and oxidative stress. Toxicol Lett 165:121–132

    Article  PubMed  CAS  Google Scholar 

  • Pathak N, Khandelwal S (2006b) Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium. Toxicology 220:26–36

    Article  PubMed  CAS  Google Scholar 

  • Pathak N, Khandelwal S (2007) Role of oxidative stress and apoptosis in cadmium induced thymic atropy and splenomegaly in mice. Toxicol Lett 169:95–108

    Article  PubMed  CAS  Google Scholar 

  • Pathak N, Khandelwal S (2009) Immunomodulatory role os piperine in cadmium induced thymic atrophy and splenomegaly. Environ Toxicol Pharmacol 28:52–60

    Article  PubMed  CAS  Google Scholar 

  • Randell EW, Mathews MS, Zhang H, Seraj JS, Sun G (2005) Relationship between serum butyrylcholinesterase and the metabolic syndrome. Clin Biochem 38:799–805

    Article  PubMed  CAS  Google Scholar 

  • Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on 15 kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  • Sadowska AM, Manuel-y-Keenoy B, De Backer WA (2007) Antioxidant and antiinflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose–effects: a review. Pulm Pharmacol Ther 20:9–22

    Article  PubMed  CAS  Google Scholar 

  • Schetinger MRC, Morsch VM, Bonan CD, Wyse AT (2007) NTPDase and 5′-nucleotidase activities in physiological and disease conditions: new perspectives for human health. Biofactors 31:77–98

    Article  PubMed  CAS  Google Scholar 

  • Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, Rosa MM, Rubin MA, Schetinger MRC, Morsch VM (2009) Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 610:42–48

    Article  PubMed  CAS  Google Scholar 

  • Shaw BP, Panigrahi AK (1990) Brain AChE activity studies in some fish species collected from a mercury contaminated estuary. Water Air Soil Pollut 53:327–334

    Article  CAS  Google Scholar 

  • Simsek N, Karadeniz A, Kalkan Y, Keles ON, Unal B (2009) Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats. J Hazard Mater 164:1304–1309

    Article  PubMed  CAS  Google Scholar 

  • Sinha M, Manna P, Sil PC (2008) Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice. BMB Rep 41:657–663

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholine—new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  • Spanevello RM, Mazzanti CM, Schmatz R, Thomé G, Bagatini M, Correa M, Rosa C, Stefanello N, Bellé LP, Moretto MB, Oliveira L, Morsch VM, Schetinger MRC (2010) The activity and expression of NTPDase is altered in lymphocytes of multiple sclerosis patients. Clin Chim Acta 411:210–214

    Article  PubMed  CAS  Google Scholar 

  • Straface E, Rivabene R, Masella R, Santulli M, Paganelli R, Malorni W (2002) Structural changes of the erythrocyte as a marker of non-insulin-dependent diabetes: protective effects of N-acetylcysteine. Biochem Bioph Res Commun 290:1393–1398

    Article  CAS  Google Scholar 

  • Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239

    Article  PubMed  Google Scholar 

  • Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflamatory pathway. J Clin Invest 117:289–296

    Article  PubMed  CAS  Google Scholar 

  • Tung HT, Cook FW, Wyatt RD, Hamilton PB (1975) The anemia caused by aflatoxin. Poult Sci 54:1962–1969

    Article  PubMed  CAS  Google Scholar 

  • Viau M, Collin-Faure V, Richaud P, Ravanat J-L, Candéias SM (2007) Cadmium and T cell differentiation: limited impact in vivo but significant toxicity in fetal thymus organ culture. Toxicol App Pharmacol 223:257–266

    Article  CAS  Google Scholar 

  • Wolkmer P, Carnelutti JF, Costa MM, Traesel CK, Da Silva AS, Lopes STA, Monteiro SG (2007) Resposta eritropoética de ratos em diferentes de graus de parasitemia por Trypanosoma evansi. Ciência Rural 37:1682–1687

    Article  Google Scholar 

  • Wolkmer P, Lopes STA, Franciscato C, Da Silva AS, Traesel CK, Siqueira LC, Pereira ME, Monteiro SG, Mazzanti CMA (2010) Trypanosoma evansi: cholinesterase activity in acutely infected Wistar rats. Exp Parasitol 125:251–255

    Article  PubMed  CAS  Google Scholar 

  • Worek F, Mast U, Kiderlen D, Diepold D, Eyer P (1999) Improved determination of acetylcholinesterase activity in human whole blood. Chin Clim Acta 288:73–90

    Article  CAS  Google Scholar 

  • Ye X, Sha J, Zheng Z, Yu B, Li J, Yang Y, Wu Y (1999) The correlation of free radicals induced by cadmium toxicess with erythrocyte injury and band3 expression. Zhonghua Yu Fang Yi Xue Za Zhi 33:18–20 (with abstract in English)

    PubMed  CAS  Google Scholar 

  • Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the FINEP research grant (Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00) and INCT for Excitotoxicity and Neuroprotection—MCT/CNPq. In addition, the authors also gratefully acknowledge the Coordenação e Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for the research fellowships.

Conflict of interest

There are no conflicts of interest for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamile F. Gonçalves or Maria Rosa C. Schetinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, J.F., Duarte, M.M.M.F., Fiorenza, A.M. et al. Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine. Biometals 25, 1195–1206 (2012). https://doi.org/10.1007/s10534-012-9582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9582-2

Keywords

Navigation