Skip to main content

Advertisement

Log in

Adipogenic and osteogenic differentiation of LinCD271+Sca-1+ adipose-derived stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adipose-derived stem cells (ASCs) have been defined as cells that undergo sustained in vitro growth and have multilineage differentiation potential. However, the identity and purification of ASCs has proved elusive due to the lack of specific markers and poor understanding of their physiological roles. Here, we prospectively isolated and identified a restricted homogeneous subpopulation of ASCs (LinCD271+Sca-1+) from mouse adipose tissues on the basis of cell-surface markers. Individual ASCs generated colony-forming unit-fibroblast at a high frequency and could differentiate into adipocytes, osteoblasts, and chondrocytes in vitro. Expansion of ASCs in a large quantity was feasible in medium supplemented with fibroblast growth factor-2 and leukemia inhibitory factor, without loss of adipogenic and osteogenic differentiation capacity. Moreover, we found that the transplanted ASCs can differentiate into adipocytes in adipogenic microenvironment in vivo and osteoblasts in osteogenic microenvironment in vivo. Thus we proved that Lin, CD271, and Sca-1 could be used as the specific markers to purify ASCs from adipose tissue. The method we established to identify ASCs as defined in vivo entities will help develop ASCs transplantation as a new therapeutic strategy for bone regeneration and adipose tissue regeneration in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Behr B, Tang C, Germann G, Longaker MT, Quarto N (2011) Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells 29:286–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levi B, James AW, Nelson ER, Li S, Peng M, Commons GW, Lee M, Wu B, Longaker MT (2011) Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts. Stem Cells Dev 20:243–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567

    Article  CAS  PubMed  Google Scholar 

  4. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boquest AC, Shahdadfar A, Fronsdal K, Sigurjonsson O, Tunheim SH, Collas P, Brinchmann JE (2005) Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16:1131–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Article  PubMed  Google Scholar 

  7. Zheng B, Cao B, Li G, Huard J (2006) Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng 12:1891–1901

    Article  CAS  PubMed  Google Scholar 

  8. Liu HY, Chiou JF, Wu AT, Tsai CY, Leu JD, Ting LL, Wang MF, Chen HY, Lin CT, Williams DF, Deng WP (2012) The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials 33:6105–6112

    Article  CAS  PubMed  Google Scholar 

  9. Komine A, Abe M, Saeki T, Terakawa T, Uchida C, Uchida T (2012) Establishment of adipose-derived mesenchymal stem cell lines from a p53-knockout mouse. Biochem Biophys Res Commun 426:468–474

    Article  CAS  PubMed  Google Scholar 

  10. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  CAS  PubMed  Google Scholar 

  11. Tang DG, Tokumoto YM, Apperly JA, Lloyd AC, Raff MC (2001) Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 291:868–871

    Article  CAS  PubMed  Google Scholar 

  12. Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113:1161–1166

    CAS  PubMed  Google Scholar 

  13. Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419

    Article  CAS  PubMed  Google Scholar 

  14. Choi YS, Cha SM, Lee YY, Kwon SW, Park CJ, Kim M (2006) Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse. Biochem Biophys Res Commun 345:631–637

    Article  CAS  PubMed  Google Scholar 

  15. Lin SD, Wang KH, Kao AP (2008) Engineered adipose tissue of predefined shape and dimensions from human adipose-derived mesenchymal stem cells. Tissue Eng Part A 14:571–581

    Article  CAS  PubMed  Google Scholar 

  16. Tsuji W, Inamoto T, Yamashiro H, Ueno T, Kato H, Kimura Y, Tabata Y, Toi M (2009) Adipogenesis induced by human adipose tissue-derived stem cells. Tissue Eng Part A 15:83–93

    Article  CAS  PubMed  Google Scholar 

  17. Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249

    Article  CAS  PubMed  Google Scholar 

  18. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  19. Arner E, Westermark PO, Spalding KL, Britton T, Ryden M, Frisen J, Bernard S, Arner P (2010) Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, Buchholz BA, Eriksson M, Arner E, Hauner H, Skurk T, Ryden M, Frayn KN, Spalding KL (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478:110–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshimura K, Suga H, Eto H (2009) Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med 4:265–273

    Article  PubMed  Google Scholar 

  22. Lin Y, Wang T, Wu L, Jing W, Chen X, Li Z, Liu L, Tang W, Zheng X, Tian W (2007) Ectopic and in situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. J Biomed Mater Res A 81:900–910

    Article  PubMed  Google Scholar 

  23. Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM (2004) Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10:371–380

    Article  CAS  PubMed  Google Scholar 

  24. Niemeyer P, Kasten P, Simank HG, Fellenberg J, Seckinger A, Kreuz PC, Mehlhorn A, Sudkamp NP, Krause U (2006) Transplantation of mesenchymal stromal cells on mineralized collagen leads to ectopic matrix synthesis in vivo independently from prior in vitro differentiation. Cytotherapy 8:354–366

    Article  CAS  PubMed  Google Scholar 

  25. Lin Y, Tian W, Chen X, Yan Z, Li Z, Qiao J, Liu L, Tang W, Zheng X (2005) Expression of exogenous or endogenous green fluorescent protein in adipose tissue-derived stromal cells during chondrogenic differentiation. Mol Cell Biochem 277:181–190

    Article  CAS  PubMed  Google Scholar 

  26. Wu Y, Xiao J, Wu L, Tian W, Liu L (2008) Expression of glutamyl aminopeptidase by osteogenic induction in rat bone marrow stromal cells. Cell Biol Int 32:748–753

    Article  CAS  PubMed  Google Scholar 

  27. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84:1663–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791

    Article  CAS  PubMed  Google Scholar 

  29. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  PubMed  Google Scholar 

  30. Gindraux F, Selmani Z, Obert L, Davani S, Tiberghien P, Herve P, Deschaseaux F (2007) Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49a molecule. Cell Tissue Res 327:471–483

    Article  CAS  PubMed  Google Scholar 

  31. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T, Shimmura S, Miyawaki A, Nakagawa T, Suda T, Okano H, Matsuzaki Y (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greber B, Lehrach H, Adjaye J (2007) Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25:455–464

    Article  CAS  PubMed  Google Scholar 

  33. Toma JG, McKenzie IA, Bagli D, Miller FD (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737

    Article  CAS  PubMed  Google Scholar 

  34. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687

    Article  CAS  PubMed  Google Scholar 

  35. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537

    Article  CAS  PubMed  Google Scholar 

  36. Lin Y, Yan Z, Liu L, Qiao J, Jing W, Wu L, Chen X, Li Z, Tang W, Zheng X, Tian W (2006) Proliferation and pluripotency potential of ectomesenchymal cells derived from first branchial arch. Cell Prolif 39:79–92

    Article  CAS  PubMed  Google Scholar 

  37. Torio-Padron N, Baerlecken N, Momeni A, Stark GB, Borges J (2007) Engineering of adipose tissue by injection of human preadipocytes in fibrin. Aesthet Plast Surg 31:285–293

    Article  Google Scholar 

  38. Ikari Y, Fujikawa K, Yee KO, Schwartz SM (2000) Alpha(1)-proteinase inhibitor, alpha(1)-antichymotrypsin, or alpha(2)-macroglobulin is required for vascular smooth muscle cell spreading in three-dimensional fibrin gel. J Biol Chem 275:12799–12805

    Article  CAS  PubMed  Google Scholar 

  39. Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y (1998) De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci USA 95:1062–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806

    Article  CAS  PubMed  Google Scholar 

  41. Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28:5477–5486

    Article  CAS  PubMed  Google Scholar 

  42. Jing W, Lin Y, Wu L, Li X, Nie X, Liu L, Tang W, Zheng X, Tian W (2007) Ectopic adipogenesis of preconditioned adipose-derived stromal cells in an alginate system. Cell Tissue Res 330:567–572

    Article  PubMed  Google Scholar 

  43. von Heimburg D, Hemmrich K, Zachariah S, Staiger H, Pallua N (2005) Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells. Respir Physiol Neurobiol 146:107–116

    Article  Google Scholar 

  44. Mylotte LA, Duffy AM, Murphy M, O’Brien T, Samali A, Barry F, Szegezdi E (2008) Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells 26:1325–1336

    Article  CAS  PubMed  Google Scholar 

  45. Wolter TP, von Heimburg D, Stoffels I, Groeger A, Pallua N (2005) Cryopreservation of mature human adipocytes: in vitro measurement of viability. Ann Plast Surg 55:408–413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Xianming Mo of the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy for help. This work was supported by grants from the National Natural Science Foundation of China (30973348), the Chinese Ministry of Science and Technology under Contract Preliminary Project (2006CB708505), and the Chinese National 973 projects (2010CB944800) to Weidong Tian. It was also supported by grants from the National Basic Research Program of China (2007CB947802) to Wentong Meng.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentong Meng or Weidong Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J., Yang, X., Jing, W. et al. Adipogenic and osteogenic differentiation of LinCD271+Sca-1+ adipose-derived stem cells. Mol Cell Biochem 377, 107–119 (2013). https://doi.org/10.1007/s11010-013-1575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1575-0

Keywords

Navigation