Skip to main content
Log in

The effects of homocysteine-related compounds on cardiac contractility, coronary flow, and oxidative stress markers in isolated rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Research on the effects of homocysteine on the vascular wall, especially in endothelial and smooth muscle cells, has indicated that increased homocysteine levels lead to cellular stress and cell damage. Considering the adverse effects of homocysteine on vascular function and the role of oxidative stress in these mechanisms, the aim of this study was to estimate the influence of different homocysteine isoforms on cardiac contractility, coronary flow, and oxidative stress markers in isolated rat heart. The hearts of male Wistar albino rats (n = 36, age 8 weeks, body mass 180–200 g), were excised and retrogradely perfused according to the Langendorff technique at a constant perfusion pressure (70 cmH2O) and administered with three isoforms of 10 μM homocysteine [dl-Hcy, dl-Hcy thiolactone-hydrochloride (TLHC) and l-Hcy TLHC). After the insertion and placement of the sensor in the left ventricle, the parameters of heart function: maximum rate of pressure development in the left ventricle (dP/dt max), minimum rate of pressure development in the left ventricle (dP/dt min), systolic left ventricular pressure (SLVP), diastolic left ventricular pressure (DLVP), mean blood pressure (MBP) and heart rate (HR)] were continuously registered. Flowmetry was used to evaluate the coronary flow. Markers of oxidative stress: index of lipid peroxidation measured as TBARS, nitric oxide measured through nitrites (NO2 ), superoxide anion radical (O2 ), and hydrogen peroxide (H2O2) in the coronary venous effluent were assessed spectrophotometrically. Our results showed that administration of Hcy compounds in concentration of 10 μM induced depression of cardiac contractility, manifested by a decrease in dp/dt max after administration of any Hcy compound, decrease in dp/dt min after administration of l-Hcy TLHC, decrease in SLVP after administration of dl-Hcy TLHC and dl-Hcy, and the drop in CF after administration of any Hcy compound. Regarding the effects of Hcy on oxidative stress parameters, only l-Hcy TLHC significantly affected O2 release. l-Hcy TLHC showed a cardiotoxic effect by affecting heart contractility, but surprisingly, it decreased the release of O2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHMT:

Betaine-homocysteine-methylo-transferase

CAD:

Coronary artery disease

CBS:

Cystathionine β-synthase

CF:

Coronary flow

CPP:

Constant perfusion pressure

CVD:

Cardiovascular disease

eNOS:

Endothelial nitric oxide synthase

Hcy:

Homocysteine

HHcy:

Hyperhomocysteinemia

HRPO:

Peroxidase from horse radish

MDA:

Malondialdehyde

MS:

Methionine synthase

MTHFR:

Methylene-tetrahydrofolate reductase

NBT:

Nitro blue tetrazolium

NO:

Nitric oxide

PRS:

Phenol red solution

TBARS:

Thiobarbituric acid reactive substances

TBA:

Thiobarbituric acid

TLHC:

Thiolactone-hydrochloride

TNF-α:

Tumor necrosis factor alpha

References

  1. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  PubMed  CAS  Google Scholar 

  2. Champe PC, Harvey RA (2008) Biochemistry. Lippincott’s Illustrated Reviews 4th ed. Lippincott Williams and Wilkins

  3. Jakubowski H (2008) The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease. J Physiol Pharmacol 59:155–167

    PubMed  Google Scholar 

  4. Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272:1935–1942

    PubMed  CAS  Google Scholar 

  5. Rasic-Markovic A, Stanojlovic O, Hrncic D, Krstic D, Colovic M, Susic V, Radosavljevic T, Djuric D (2009) The activity of erythrocyte and brain Na+/K+- and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration. Mol Cell Biochem 327:39–45

    Article  PubMed  CAS  Google Scholar 

  6. Refsum A, Ueland PM (1998) Homocysteine and cardiovascular disease. Annu Rev Medicine 49:31–62

    Article  CAS  Google Scholar 

  7. Allen RH, Stabler SP, Savage DG, Lindenbaum J (1993) Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J 7:1344–1353

    PubMed  CAS  Google Scholar 

  8. Kaplan ED (2003) Association between homocyst(e)ine levels and risk of vascular events. Drugs Today (Barc) 39:175–192

    Article  CAS  Google Scholar 

  9. The Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288:2015–2022

    Article  Google Scholar 

  10. Ford ES, Smith SJ, Stroup DF, Steinberg KK, Mueller PW, Thacker SB (2002) Homocyst(e)ine and cardiovascular disease: a systematic review of the evidence with special emphasis on case–control studies and nested case–control studies. Int J Epidemiol 31:59–70

    Article  PubMed  Google Scholar 

  11. Rieth A, Dill T, Deetjen A, Djuric D, Mitrovic V (2006) Effects of homocysteine-lowering therapy on endothelial function, carotid wall thickness and myocardial perfusion. Acta Fac Med Naiss 23:179–184

    Google Scholar 

  12. Mitrovic V, Djuric D, Petkovic D, Hamm C (2002) Evaluation of total plasma homocysteine in patients with angiographically defined coronary atherosclerosis: possible impact on therapy and prognosis. Perfusion 15:10–19

    Google Scholar 

  13. Tawakol A, Forgione MA, Stuehlinger M, Alpert NM, Cooke JP, Loscalzo J, Fischman AJ, Creager MA, Gewirtz H (2002) Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol 40:1051–1058

    Article  PubMed  CAS  Google Scholar 

  14. Wang S, Wright G, Harrah J, Touchon R, McCumbee W, Geng W, Fultz MN, Abdul-Jalil MN, Wright GL (2000) Short-term exposure to homocysteine depresses rat aortic contractility by an endothelium-dependent mechanism. Can J Physiol Pharmacol 78:500–506

    Article  PubMed  CAS  Google Scholar 

  15. Vignini A, Nanetti L, Bacchetti T, Ferretti G, Curatola G, Mazzanti L (2004) Modification induced by homocysteine and low-density lipoprotein on human aortic endothelial cells: an in vitro study. J Clin Endocrinol Metab 89:4558–4561

    Article  PubMed  CAS  Google Scholar 

  16. Su SJ, Huang LW, Pai LS, Liu HW, Chang KL (2005) Homocysteine at pathophysiologic concentrations activates human monocyte and induces cytokine expression and inhibits macrophage migration inhibitory factor expression. Nutrition 21:994–1002

    Article  PubMed  CAS  Google Scholar 

  17. Demuth K, Atger V, Borderie D, Benoit MO, Sauvaget D, Lotersztajn S, Moatti N (1999) Homocysteine decreases endothelin-1 production by cultured human endothelial cells. Eur J Biochem 263:367–376

    Article  PubMed  CAS  Google Scholar 

  18. Brown JC, Rosenquist TH, Monaghan DT (1998) ERK2 activation by homocysteine in vascular smooth muscle cells. Biochem Biophys Res Commun 251:669–676

    Article  PubMed  CAS  Google Scholar 

  19. Tyagi SC, Smiley LM, Mujumdar VS (1999) Homocyst(e)ine impairs endocardial endothelial function. Can J Physiol Pharmacol 77:950–957

    Article  PubMed  CAS  Google Scholar 

  20. Miller A, Mujumdar V, Palmer L, Bower JD, Tyagi SC (2001) Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. Am J Hypertension 15:157–163

    Article  Google Scholar 

  21. Joseph J, Joseph L, Shekhawat NS, Devi S, Wang J, Melchert RB, Hauer-Jensen M, Kennedy RH (2003) Hyperhomocysteinemia leads to pathological ventricular hypertrophy in normotensive rats. Am J Physiol Heart Circ Physiol 285:H679–H686

    PubMed  CAS  Google Scholar 

  22. Chambers JC, Mc Gregor A, Jean-Marie J, Obeid OA, Kooner JS (1999) Demonstracion of rapid onest vascular endothelial dysfunction after hyperhomocysteinemia. Circulation 99:1156–1160

    Article  PubMed  CAS  Google Scholar 

  23. Tyagi N, Moshal KS, Oveckin AV, Rodriguez W, Steed M, Henderson B, Roberts AM, Joshua IG, Tyagi SC (2005) Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia. J Cell Biochem 96:665–671

    Article  PubMed  CAS  Google Scholar 

  24. Parodi O, De Chiara B, Baldassarre D, Parolini M, Caruso R, Pustina L, Parodi G, Campolo J, Sedda V, Baudo F, Sirtori C (2007) Plasma cysteine and glutathione are independent markers of postmethionine load endothelial dysfunction. Clin Biochem 40:188–193

    Article  PubMed  CAS  Google Scholar 

  25. Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, Ferran LJ Jr, Kohl B, Rao V, Kisiel W, Stern DM, Schmidt AM (2001) Hyperhomocysteinaemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 107:675–683

    Article  PubMed  CAS  Google Scholar 

  26. Bellamy MF, McDowell IF (1997) Putative mechanisms for vascular damage by homocysteine. J Inherit Metab Dis 20:307–315

    Article  PubMed  CAS  Google Scholar 

  27. Lentz SR, Erger RA, Dayal S, Maeda N, Malinow MR, Heistad DD, Faraci FM (2000) Folate dependence of hyperhomocysteinaemia and vascular dysfunction in cystathionine beta-synthase-deficient mice. Am J Physiol Heart Circ Physiol 279:H970–H975

    PubMed  CAS  Google Scholar 

  28. Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H (2004) Abnormal lipid metabolism in cystathionine beta-synthasedeficient mice, an animal model for hyperhomocysteinaemia. J Biol Chem 279:52961–52969

    Article  PubMed  CAS  Google Scholar 

  29. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  30. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  31. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press Une, Boca Raton, pp 123–132

    Google Scholar 

  32. Pick E, Keisari Y (1980) A simple colorimetric method for the measurment of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170

    Article  PubMed  CAS  Google Scholar 

  33. Moshal KS, Kumar M, Tyagi N, Mishra PK, Metreveli N, Rodriguez WE, Tyagi SC (2009) Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. Am J Physiol Heart Circ Physiol 296:H887–H892

    Article  PubMed  CAS  Google Scholar 

  34. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandala PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H890–H897

    Article  PubMed  CAS  Google Scholar 

  35. Chen FY, Guo YH, Gao W et al (2006) Effects of hyperhomocysteinemia on cardiac remodeling in rats. J Peck Univ (Health Sci) 2:179–183

    Google Scholar 

  36. Joseph J, Washington A, Joseph L et al (2002) Hyperhomocysteinemia leads to adverse cardiac remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol 283:H2567–H2574

    PubMed  CAS  Google Scholar 

  37. Miller A, Mujumdar V, Palmer L, Bower JD, Tyagi SC (2002) Reversal of endocardial endothelial dysfunction by folic acid in homocysteinemic hypertensive rats. Am J Hypertens 15:157–163

    Article  PubMed  CAS  Google Scholar 

  38. Sood HS, Cox MJ, Tyagi SC (2002) Generation of nitrotyrosine precedes the activation of matrix metalloproteinase in left ventricle of hyperhomocystenemia rats. Antioxid Redox Signal 4(5):799–804

    Article  PubMed  CAS  Google Scholar 

  39. Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS (2000) Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 279:F671–F678

    PubMed  CAS  Google Scholar 

  40. Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  PubMed  CAS  Google Scholar 

  41. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J (1993) Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 91:308–318

    Article  PubMed  CAS  Google Scholar 

  42. Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow RM, Heistad DD (1996) Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98:24–29

    Article  PubMed  CAS  Google Scholar 

  43. Lentz SR (1997) Consequences of hyperhomocyst(e)inemia on vascular function in atherosclerotic monkeys. Arterioscler Thromb Vasc Biol 17:2930–2934

    Article  PubMed  CAS  Google Scholar 

  44. Maqueda MA, El Bekay R, Monteseirın J, Alba G, Chacón P, Vega A, Santa Marıa C, Tejedo JR, Nieto JM, Bedoya FJ, Pintado E, Sobrino F (2004) Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. Atherosclerosis 172:229–238

    Article  Google Scholar 

  45. Heinecke JW (1988) Superoxide-mediated oxidation of low density lipoprotein by thiols. In: Cerruti PA, Fridovich I, McCord JM, Liss AR (eds) Oxy-radicals in molecular biology and pathology. Academic Press, New York, pp 443–457

    Google Scholar 

  46. Harker LA, Slichter SJ, Scott CR, Ross R, Homocysteinemia (1974) Vascular injury and arterial thrombosis. N Engl J Med 291:243–537

    Article  Google Scholar 

  47. Aparna P, Betigeri AM, Pasupatathi P (2010) Homocysteine and oxidative stress markers and inflammation in patients with coronary artery disease. Int J Biol Med Res 1:125–129

    Google Scholar 

  48. Cavalca V, Cighnetti G, Bamonti F, Loadi A, Bortone L, Novembrino C, De Franceschi M, Belardinelli R, Guazzi MD (2001) Oxidative stress in coronary artery disease. Clin Chem 47:887–892

    PubMed  CAS  Google Scholar 

  49. Ventura P, Vanhaecke J, Janssens S, Van de Werf F, Collen D (1998) Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary sindromes and stabile coronary artery disease. Circulation 98:1487–1494

    Article  Google Scholar 

  50. Huang RFS, Huang SM, Lin BS, Wei JS, Liu TZ (2001) Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells. Life Sci 68:2799–2811

    Article  PubMed  CAS  Google Scholar 

  51. Zappacosta B, Mordente A, Persichilli S, Minucci A, Carlino P, Martorana GE, Giardina B, de Sole P (2001) Is homocysteine a prooxidan? Free Radical Res 35:499–505

    Article  CAS  Google Scholar 

  52. Chambers JC, Kooner JS (2001) Homocysteine-an innocent bystander in vascular disease? Eur Heart J 22:717–719

    Article  PubMed  CAS  Google Scholar 

  53. Djuric D, Vusanovic A, Jakovljevic V (2007) The effects of folic acid and nitric oxide synthase inhibition on coronary flow and oxidative stress markers in isolated rat heart. Mol Cell Biochem 300:177–183

    Article  PubMed  CAS  Google Scholar 

  54. De Groote MA, Testerman T, Xu Y, Stauffer G, Fang FC (1996) Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272:414–417

    Article  PubMed  Google Scholar 

  55. da Cunha AA, Scherer E, da Cunha MJ, Schmitz F, Machado FR, Lima DD, Delwing D, Wyse AT (2012) Acute hyperhomocysteinemia alters the coagulation system and oxidative status in the blood of rats. Mol Cell Biochem 360:205–214

    Article  PubMed  CAS  Google Scholar 

  56. Kennedey RH, Owings R, Shekhawat N, Joseph J (2004) Acute negative inotropic effects of homocysteine are mediated via the endothelium. Am J Physiol Heart Circ Physiol 287:H812–H817

    Article  Google Scholar 

  57. Kennedy RH, Owings R, Joseph J, Melchert RB, Hauer-Jensen M, Boerma M (2006) Acute dilatory and negative inotropic effects of homocysteine are inhibited by an adenosine blocker. Clin Exp Pharmacol Physiol 33:340–344

    Article  PubMed  CAS  Google Scholar 

  58. Sprince H, Parker CM, Josephs JA Jr (1969) Homocysteine-induced convulsions in the rat: protection by homoserine, serine, betaine, glycine and glycose. Agents Actions 1:9–13

    Article  PubMed  CAS  Google Scholar 

  59. Sipkens JA, Krijnen PAJ, Meischl C et al (2007) Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis. Apoptosis 12:1407–1418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Grant No. 175043 from the Ministry of Science and Technical Development of the Republic of Serbia and Junior project 04/2011 Faculty of Medicine, University of Kragujevac.

Conflict of interests

All authors of the present paper disclose no actual or potential conflict of interests including any financial, personal or other relationships with other people or organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jakovljevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zivkovic, V., Jakovljevic, V., Djordjevic, D. et al. The effects of homocysteine-related compounds on cardiac contractility, coronary flow, and oxidative stress markers in isolated rat heart. Mol Cell Biochem 370, 59–67 (2012). https://doi.org/10.1007/s11010-012-1398-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1398-4

Keywords

Navigation