Skip to main content

Advertisement

Log in

Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia (HHcy) is an independent risk factor of cardiovascular disease, but the mechanisms of tissue injury are poorly understood. In the present study, we investigated the effect of HHcy on rat heart function, activities electron transport chain (ETC) complexes, mitochondrial protein expression, and protein oxidative damage. HHcy was induced by subcutaneous injection of Hcy (0.45 μmol/g of body weight) twice a day for a period of 2 weeks. Performance of hearts excised after the Hcy treatment was examined according to the Langendorff method at a constant pressure. Left ventricular developed pressure, as well as maximal rates of contraction (+dP/dt) and relaxation (−dP/dt), was significantly depressed in HHcy rats. HHcy was accompanied by significant inhibition of ETC complexes II–IV, whereas activity of the complex I was unchanged. The decline in ETC activities was not associated with elevated protein oxidative damage, as indicated by unchanged protein carbonyl, thiol, and dityrosine contents. Moreover, the level of protein adducts with 4-hydroxynonenal was decreased in HHcy rats. Additionally, 2D-gel electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not show alterations in contents of inhibited ETC complexes. However, mass spectrometry analyses identified 8 proteins whose expression was significantly increased by HHcy. These proteins are known to play important roles in the cellular stress response, bioenergetics, and redox balance. Altogether, the results suggest that oxidative damage and altered protein expression are not possible causes of ETC dysfunction in HHcy rats. Increased expression of the other mitochondrial proteins indicates a protective response to Hcy-induced myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ETC:

Electron transport chain

Hcy:

Homocysteine

HHcy:

Hyperhomocysteinemia

References

  1. Cesari M, Rossi GP, Sticchi D, Pessina AC (2005) Is homocysteine important as risk factor for coronary heart disease? Nutr Metab Cardiovasc Dis 15:140–147. doi:10.1016/j.numecd.2004.04.002

    Article  PubMed  Google Scholar 

  2. Joseph J, Lija J, Shekhawat NS, Devi S, Wang J, Melchert RB, Hauer-Jensen M, Kennedy RH (2003) Hyperhomocysteinemia leads to pathological ventricular hypertrophy in normotensive rats. Am J Physiol Heart Circ Physiol 285:H679–H686. doi:10.1152/ajpheart.00145.2003

    Article  CAS  PubMed  Google Scholar 

  3. Joseph J, Joseph L, Devi S, Kennedy RH (2008) Effect of anti-oxidant treatment on hyperhomocysteinemia induced myocardial fibrosis and diastolic dysfunction. J Heart Lung Transplant 27:1237–1241. doi:10.1016/j.healun.2008.07.024

    Article  PubMed  Google Scholar 

  4. Mendes RH, Sirvente RA, Candidi GO, Mostarda C, Salemi VMC, D’Almeida V, Jacob MH, Riberio MF, Belló-Klein A, Rigatto K, Irigoyen MC (2010) Homocysteine thiolactone induces cardiac dysfunction: role of oxidative stress. J Cardiovasc Pharmacol 55:198–202. doi:10.1097/FJC.0b013e3181ce5c28

    Article  CAS  PubMed  Google Scholar 

  5. Zivkovic V, Jakovljevic V, Djordjevic D, Vuletic M, Barudzic N, Djuric D (2012) The effects of homocysteine-related compounds on cardiac contractility, coronary flow, and oxidative stress markers in isolated rat heart. Mol Cell Biochem 370:59–67. doi:10.1007/s11010-012-1398-4

    Article  CAS  PubMed  Google Scholar 

  6. Suematsu N, Ojaimi C, Kinugawa S, Wang Z, Xu X, Koller A, Recchia FA, Hintze TH (2007) Hyperhomocysteinemia alters cardiac substrate metabolism by impairing nitric oxide bioavailability through oxidative stress. Circulation 115:255–262

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, Loscalyo J (2012) Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol 52:753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maron BA, Loscalzo J (2009) The treatment of hyperhomocysteinemia. Annu Rev Med 60:39–54. doi:10.1146/annurev.med.60.041807.123308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenberger D, Gargoum R, Tyagi N, Metreveli N, Sen U, Maldonado C, Tyagi S (2011) Homocysteine enriched diet leads to prolonged QT interval and reduced left ventricular performance in telemetric monitored mice. Nutr Metab Cardiovasc Dis 21:492–498. doi:10.1016/j.numecd.2009.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levrand S, Pacher P, Pesse B, Rolli J, Feihl F, Waeber B, Liaudet L (2007) Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite. Biochem Biophys Res Commun 359:445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse ATS (2011) Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11:67–73. doi:10.1007/s12012-010-9094-7

    Article  CAS  PubMed  Google Scholar 

  12. Gomez J, Sanchez-Roman I, Gomez A, Sanchez C, Suarez H, Lopez-Torres M, Barja G (2011) Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr 43:377–386. doi:10.1007/s10863-011-9368-1

    Article  CAS  PubMed  Google Scholar 

  13. Althausen S, Paschen W (2000) Homocysteine-induced changes in mRNA levels of genes coding for cytoplasmic- and endoplasmic reticulum-resident stress proteins in neuronal cell cultures. Mol Brain Res 84:32–40

    Article  CAS  PubMed  Google Scholar 

  14. De Bree A, Verschuren WMM, Kromhout D, Kluijtmans LAJ, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54:599–618

    Article  PubMed  Google Scholar 

  15. Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, Koller A (2003) Increased superoxide production in coronary arteries in hyperhomocysteinemia. Role of tumor necrosis factor-α, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 23:418–424

    Article  CAS  PubMed  Google Scholar 

  16. Perez-de-Arce K, Foncea R, Leighton F (2005) Reactive oxygen species mediates homocysteine-induced mitchondrial biogenesis in human endothelial cells modulation by antioxidants. Biochim Biophys Res Commun 338:1103–1109

    Article  CAS  Google Scholar 

  17. Chang P-Y, Lu S-C, Lee C-M, Chen Y-J, Dugan TA, Huang W-H, Chang S-F, Liao WSL, Chen C-H, Lee Y-T (2008) Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res 102:933–941. doi:10.1161/CIRCRESAHA.108.171082

    Article  CAS  PubMed  Google Scholar 

  18. Scherer EBS, Loureiro SO, Vuaden FC, Schmitz F, Kolling J, Siebert C, Savio LEB, Schweinberger BM, Bogo MR, Bonan CD, Wyse ATS (2013) Mild hyperhomocysteinemia reduces the activity and immunocontent, but does not alter the gene expression, of catalytic a subunits of cerebral Na+, K+-ATPase. Mol Cell Biochem 378:91–97. doi:10.1007/s11010-013-1598-6

    Article  CAS  PubMed  Google Scholar 

  19. Suszyńska-Zajczyk J, Łuczak M, Marczak Ł, Jakubowski H (2014) Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration. J Alzheimers Dis 40:713–726. doi:10.3233/JAD-132033

    PubMed  Google Scholar 

  20. Derouiche F, Bôle-Feysot C, Naïmi D, Coëffier M (2014) Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta. Biochem Biophys Res Commun 452:740–745. doi:10.1016/j.bbrc.2014.08.141

    Article  CAS  PubMed  Google Scholar 

  21. Martinez E, Deval C, Jousse C, Mazur A, Brachet P, Comte B (2015) Methyl donor deficiency in H9c2 cardiomyoblasts induces ER stress as an important part of the proteome response. Int J Biochem Cell Biol 59:62–72. doi:10.1016/j.biocel.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  22. Moshal KD, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H890–H897. doi:10.1152/ajpheart.00099.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kadenbach B, Ramzan R, Moosdorf R, Vogt S (2011) The role of mitochondrial membrane potential in ischemic heart failure. Mitochondrion 11:700–706. doi:10.1016/j.mito.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  24. Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–1738. doi:10.1016/j.biocel.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  25. Dai DF, Rabinovitch PS, Ungvari Z (2012) Mitochondria and cardiovascular aging. Circ Res 110:1109–1124. doi:10.1161/CIRCRESAHA.111.246140

    Article  CAS  PubMed  Google Scholar 

  26. Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585

    Article  CAS  PubMed  Google Scholar 

  27. De Bree A, van der Put NMJ, Mennen LI, Verschuren WMM, Blom HJ, Galan P, Bates CJ, Herrmann W, Ullrich M, Dierkes J, Westphal S, Bouter LM, Heine RJ, Stehouwer CDA, Dekker JM, Nijpels GN, Araújo F, Cunha-Ribeiro LM, Refsum H, Vollset S, Nygard O, Ueland PM (2005) Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations. Eur J Clin Nutr 59:480–488. doi:10.1038/sj.ejcn.1602097

    Article  PubMed  Google Scholar 

  28. Angeline T, Jeyaraj N, Tsongalis GJ (2007) MTHFR Gene polymorphisms, B-vitamins and hyperhomocystinemia in young and middle-aged acute myocardial infarction patients. Exp Mol Pathol 82:227–233. doi:10.1016/j.yexmp.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  29. Streck EL, Matte C, Vieira PS, Rombaldi F, Wannmacher CMD, Wajner M, Wyse ATS (2002) Reduction of Na+, K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  CAS  PubMed  Google Scholar 

  30. Babusikova E, Kaplan P, Lehotsky J, Jesenak M, Dobrota D (2004) Oxidative modification of rat cardiac mitochondrial membranes and myofibrils by hydroxyl radicals. Gen Physiol Biophys 23:327–335

    CAS  PubMed  Google Scholar 

  31. Nulton-Persson AC, Szweda LI (2011) Modulation of mitochondrial function by hydrogen peroxide. J Biol Chem 276:23357–23361

    Article  Google Scholar 

  32. Powell CS, Jackson RM (2003) Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. Am J Physiol Lung Cell Mol Physiol 285:L189–L198

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan P, Tatarkova Z, Racay P, Lehotsky J, Pavlikova M, Dobrota D (2007) Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep 12:212–218

    Article  Google Scholar 

  34. Kaplan P, Babusikova E, Lehotsky J, Dobrota D (2003) Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Mol Cell Biochem 248:41–47

    Article  CAS  PubMed  Google Scholar 

  35. Martins PJF, Galdieri LC, Souza FG, Andersen ML, Benedito-Silva AA, Tufik S, D’Almeida V (2005) Physiological variation in plasma total homocysteine concentrations in rats. Life Sci 76:2621–2629. doi:10.1016/j.lfs.2004.12.011

    Article  CAS  PubMed  Google Scholar 

  36. Sipkens JA, Krijnen PAJ, Meischl CM, Cillessen SAGM, Smulders YM, Smith DEC, Giroth CPE, Spreeuwenberg MD, Musters RJP, Muller A, Jakobs C, Roos D, Stehouwer CDA, Rauwerda JA, van Hinsbergh VWM, Niessen HWM (2007) Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis. Apoptosis 12:1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang L, Xu J, Yu F, Zhao J, Tang X, Tang C (2004) Taurine protected myocardial mitochondria injury induced by hyperhomocysteinemia in rats. Amino Acids 27:37–48

    Article  CAS  PubMed  Google Scholar 

  38. Sood HS, Cox MJ, Tyagi SC (2002) Generation of nitrotyrosine precedes activation of metalloproteinase in myocardium of hyperhomocysteinemic rats. Antioxid Redox Signal 4:799–804

    Article  CAS  PubMed  Google Scholar 

  39. Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxyl-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11. doi:10.1016/j.chemphyslip.2008.09.004

    Article  PubMed  Google Scholar 

  40. Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272:1935–1942

    CAS  PubMed  Google Scholar 

  41. Jakubowski H (1999) Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 13:2277–2283

    CAS  PubMed  Google Scholar 

  42. Sikora M, Marczak Ł, Kubalska J, Graban A, Jakubowski H (2014) Identification of N-homocysteinylation sites in plasma proteins. Amino Acids 46:235–244. doi:10.1007/s00726-013-1617-7

    Article  CAS  PubMed  Google Scholar 

  43. Lenaz G, Genova ML (2009) Structural and functional organization of the mitochondrial respiratory chain: dynamic super-assembly. Int J Biochem Cell Biol 41:1750–1772

    Article  CAS  PubMed  Google Scholar 

  44. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787–1792

    Article  CAS  PubMed  Google Scholar 

  45. Ilangovan G, Venkatakrishnan CD, Bratasz A, Osinbowale S, Cardounel AJ, Zweier JL, Kuppusamy P (2006) Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac H9c2 cells. Am J Physiol Cell Physiol 290:C313–C324

    Article  CAS  PubMed  Google Scholar 

  46. Quinlan CL, Treberg JR, Perevoshchikova IV, Orr AL, Brand MD (2012) Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reportetrs. Free Radic Biol Med 53:1807–1817. doi:10.1016/j.freeradbiomed.2012.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martinez E, Gérard N, Garcia MM, Mazur A, Guéant-Rodriguez R-M, Comte B, Guéant J-L, Brachet P (2013) Myocardium proteome remodelling after nutritional deprivation of methyl donors. J Nutr Biochem 24:1241–1250. doi:10.1016/j.jnutbio.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  48. Jonckheere AI, Smeitink JAM, Rodenburg RJT (2012) Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35:211–225. doi:10.1007/s10545-011-9382-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shoshan-Barmatz V, Ben-Hail D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12:24–34

    Article  CAS  PubMed  Google Scholar 

  50. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  51. McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta 1818:1444–1450. doi:10.1016/j.bbamem.2011.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants VEGA 1/0129/14 and VVCE APVV 0064/07 from the Ministry of Education and Science of the Slovak Republic and project “Martin Biomedical Center (BioMed Martin)”, ITMS code: 26220220187 co-financed from EU sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kaplan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timkova, V., Tatarkova, Z., Lehotsky, J. et al. Effects of mild hyperhomocysteinemia on electron transport chain complexes, oxidative stress, and protein expression in rat cardiac mitochondria. Mol Cell Biochem 411, 261–270 (2016). https://doi.org/10.1007/s11010-015-2588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2588-7

Keywords

Navigation