Skip to main content
Log in

Myrtenal, a natural monoterpene, down-regulates TNF-α expression and suppresses carcinogen-induced hepatocellular carcinoma in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma is one of the most common cancers and lethal diseases in the world. Recently, many researchers focused to identify novel chemotherapeutic agents from natural sources against hepatocarcinogenesis. The diverse therapeutic potential of essential oils has drawn the attention of researchers to test them for anticancer activity, taking advantage of the fact that their mechanism of action is dissimilar to that of chemotherapeutic agents. Earlier reports indicated that essential oil components, especially monoterpenes, have multiple pharmacological effects which could account for the terpene-tumor suppressive activity. In the present study, it is shown that myrtenal, a natural monoterpene, which acts as an antineoplastic agent against diethylnitrosamine induced phenobarbital promoted experimental hepatocellular carcinoma. The results revealed an elevated level of microsomal lipid peroxidation in the liver, which was found to be significantly reduced by myrtenal treatment. On the contrary, the Phase I hepatic drug metabolizing enzymes’ (cytochrome P450, cytochrome b 5, NADPH-cytochrome c reductase, NADH-cytochrome b 5 reductase) levels were decreased and the Phase II enzymes (glutathione-S-transferase, uridine 5′-diphospho-glucuronyl transferase) were increased in carcinogen-administered animals, which were reverted to near normalcy upon myrtenal administration. Our findings also showed that myrtenal restrains the liver cancer by preventing the DEN–PB induced up-regulation of TNF-α protein expression by immunoblot. Furthermore, transmission electron microscopic examination also indicated that myrtenal prevents the carcinogen-induced changes in the architecture of liver tissue and cell structure. Thus, this study shows that myrtenal has the ability to suppress the hepatocellular carcinoma in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HCC:

Hepatocellular carcinoma

DEN:

Diethylnitrosamine

PB:

Phenobarbital

AFP:

α-Fetoprotein

CEA:

Carcinoembryonic antigen

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

GST:

Glutathione-S-transferase

UDP-GT:

Uridine 5′-diphospho-glucuronyl transferase

TNF-α:

Tumor necrosis factor-α

FADD:

Fas-associated death domain

TADD:

TNF receptor 1 associated death domain

References

  1. Barthelman M, Chen W, Gensler HL, Huang C, Dong Z, Bowden GT (1998) Inhibitory effects of perillyl alcohol on UVB-induced murine skin cancer and AP-1 transactivation. Cancer Res 58:711–716

    PubMed  CAS  Google Scholar 

  2. Haag JD, Gould MN (1994) Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chemother Pharmacol 34:477–483

    Article  PubMed  CAS  Google Scholar 

  3. Wattenberg LW, Coccia JB (1991) Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone carcinogenesis in mice by d-limonene and citrus fruit oils. Carcinogenesis 12:115–117

    Article  PubMed  CAS  Google Scholar 

  4. Stark MJ, Burke YD, McKinzie JH, Ayoubi AS, Crowell PL (1995) Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol. Cancer Lett 96:15–21

    Article  PubMed  CAS  Google Scholar 

  5. Mills JJ, Chari RS, Boyer IJ, Gould MN, Jirtle RL (1995) Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res 55:979–983

    PubMed  CAS  Google Scholar 

  6. Reddy BS, Wang CX, Samaha H, Lubet R, Steele VE, Kelloff GJ, Rao CV (1997) Chemoprevention of colon carcinogenesis by dietary perillyl alcohol. Cancer Res 57:420–425

    PubMed  CAS  Google Scholar 

  7. Karp F, Mihaliak CA, Harris JL, Croteau R (1990) Monoterpene biosynthesis: specificity of the hydroxylations of (−)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint, (Mentha spectat), and perilla (Perilla frutescens) leaves. Arch Biochem Biophys 276:219–226

    Article  PubMed  CAS  Google Scholar 

  8. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    PubMed  CAS  Google Scholar 

  9. Elson CE (1995) Suppression of mevalonate pathway activities by dietary isoprenoids: protective roles in cancer and cardiovascular disease. J Nutr 125:1666S–1672S

    PubMed  CAS  Google Scholar 

  10. Yamamoto Y, Hosokawa M, Kurihara H, Maoka T, Miyashita K (2008) Synthesis of phosphatidylated-monoterpene alcohols catalyzed by phospholipase D and their antiproliferative effects on human cancer cells. Bioorg Med Chem Lett 18:4044–4046

    Article  PubMed  CAS  Google Scholar 

  11. Ripple GH, Gould MN, Arzoomanian RZ, Alberti D, Feierabend C, Simon K, Binger K, Tutsch KD, Pomplun M, Wahamaki A, Marnocha R, Wilding G, Bailey HH (2000) Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day. Clin Cancer Res 6:390–396

    PubMed  CAS  Google Scholar 

  12. Samaila D, Toy BJ, Wang RC, Elegbede JA (2004) Monoterpenes enhanced the sensitivity of head and neck cancer cells to radiation treatment in vitro. Anticancer Res 24:3089–3095

    PubMed  CAS  Google Scholar 

  13. Bailey HH, Levy D, Harris LS, Schink JC, Foss F, Beatty P, Wadler S (2002) A phase II trial of daily perillyl alcohol in patients with advanced ovarian cancer: Eastern Cooperative Oncology Group Study E2E96. Gynecol Oncol 85:464–468

    Article  PubMed  CAS  Google Scholar 

  14. Xu M, Floyd HS, Greth SM, Chang WC, Lohman K, Stoyanova R, Kucera GL, Kute TE, Willingham MC, Miller MS (2004) Perillyl alcohol-mediated inhibition of lung cancer cell line proliferation: potential mechanisms for its chemotherapeutic effects. Toxicol Appl Pharmacol 195:232–246

    Article  PubMed  CAS  Google Scholar 

  15. Boon PJM, Boon DVD, Mulder GL (2000) Cytotoxicity and biotransformation of the anticancer drug perillyl alcohol in PC12 cells and in the rat. Toxicol Appl Pharmacol 167:55–62

    Article  PubMed  CAS  Google Scholar 

  16. Cruz Silva MM, Melo ML, Parolin M, Tessaro D, Riva S, Danieli B (2004) Tetrahedron. Asymmetry 15:21–27

    Article  CAS  Google Scholar 

  17. Marica Lindmark H, Dan I, Tomas V, Irena V, Hans-Erik H, Kristina S (2004) Transformation of terpenes using a Picea abies suspension culture. J Biotechnol 107:173–184

    Article  Google Scholar 

  18. Vibha JB, Choudhary K, Mangal Singh, Rathore MS, Shekhawat NS (2009) A study on pharmacokinetics and therapeutic efficacy of Glycyrrhiza glabra. A Miracle Medicinal Herb. Bot Res Int 2:157–163

    Google Scholar 

  19. Holguín MAL, Holguín FO, Micheletto S, Goehle S, Simon JA, O’Connell MA (2008) Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry 69:919–927

    Article  PubMed  Google Scholar 

  20. Kaufmann D, Dogra AK, Wink M (2011) Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J Pharm Pharmacol 63(10):1368–1371

    Article  PubMed  CAS  Google Scholar 

  21. Ishida T (2005) Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem Biodivers 2(5):569–590

    Article  PubMed  CAS  Google Scholar 

  22. Dullin A, Dufrasne F, Gelbcke M, Gust R (2004) Enantiomerically pure [1,2-diamino-1-(4-fluorophenyl)butane]platinum(II) complexes: synthesis and antitumor activity against MCF-7 and MDA-MB 231 breast cancer and LnCaP/FGC prostate cancer cell lines. Arch Pharm 337(12):654–667

    Article  CAS  Google Scholar 

  23. Ishida T, Toyota M, Asakawa Y (1989) Terpenoid biotransformation in mammals. V. Metabolism of (+)-citronellal, (±)-7-hydroxycitronellal, citral, (−)-perillaldehyde, (−)-myrtenal, cuminaldehyde, thujone, and (±)-carvone in rabbits. Xenobiotica 19:843–855

    Article  PubMed  CAS  Google Scholar 

  24. Sivalokanathan S, Ilayaraja M, Balasubramanian MP (2006) Antioxidant activity of Terminalia arjuna bark extract on N-nitrosodiethylamine induced hepatocellular carcinoma in rats. Mol Cell Biochem 281:87–93

    Article  PubMed  CAS  Google Scholar 

  25. Hari Babu L, Nandakumar N, Rengarajan T, Perumal S, Balasubramanian MP (2012) Myrtenal ameliorates diethylnitrosamine-induced hepatocarcinogenesis through the activation of tumor suppressor protein p53 and regulation of lysosomal and mitochondrial enzymes. Fundam Clin Pharmacol. doi:10.1111/j.1472-8206.2012.01039.x

    Google Scholar 

  26. Sell S, Beckar FF (1978) Alpha-fetoprotein. J Natl Cancer Inst 60:19–26

    PubMed  CAS  Google Scholar 

  27. Macnab GM, Urbanowicz JM, Kew JM (1978) Carcinoembryonic antigen in hepatocellular cancer. Br J Cancer 38:51–54

    Article  PubMed  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AJ, Randall AL (1951) Protein measurement with Folins’ phenol reagent. J Biol Chem 193:262–275

    Google Scholar 

  29. Kamath SA, Narayan KA (1972) Interaction of Ca2+ with endoplasmic reticulum of rat liver: a standardized procedure for the isolation of rat liver microsomes. Anal Biochem 48:53–61

    Article  PubMed  CAS  Google Scholar 

  30. Wright JR et al (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304

    Article  PubMed  CAS  Google Scholar 

  31. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 239:2379–2385

    PubMed  CAS  Google Scholar 

  32. Philips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide-cytochromec reductase: isolation, characterization and kinetic studies. J Biol Chem 237:2652–2669

    Google Scholar 

  33. Strittmatter P, Velick SF (1956) A microsomal cytochrome reductase specific for di phosphor pyridine nucleotide. J Biol Chem 221:277–286

    PubMed  CAS  Google Scholar 

  34. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  35. Hollman S, Touster O (1962) Alterations in tissue levels of UDP-glucose dehydrogenase, UDP-glucuronic acid pyrophosphatase and glucuronyl transferase induced by substances influencing the production of ascorbic acid. Biochim Biophys Acta 62:338–352

    Article  Google Scholar 

  36. David GFX, Herbert J, Wright CDS (1973) The ultrastructure of the pineal ganglion in the ferret. J Anat 115:79–97

    PubMed  CAS  Google Scholar 

  37. Yamada K, Yamamiya I, Utsumi H (2006) In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue. Free Radic Biol Med 40:2040–2046

    Article  PubMed  CAS  Google Scholar 

  38. Yu AS, Keeffe EB (2003) Management of hepatocellular carcinoma. Rev Gastroenterol Disord 3:8–24

    PubMed  CAS  Google Scholar 

  39. Sivaramakrishnan V, Shilpa P, Kumar V, Devaraj SN (2008) Attenuation of N-nitrosodiethylamine-induced hepatocellular carcinogenesis by a novel flavonol–morin. Chem Biol Interact 171:79–88

    Article  PubMed  CAS  Google Scholar 

  40. Sell S, Becker F, Leffert HL, Osborn K, Salman J, Lombardi B, Shinozuka Reddy J, Roushlahti E, Sala-Trepat J (1983) α-Fetoprotein as a marker for early events and carcinoma development during chemical hepatocarcinogenesis. Environ Sci Res 29:271–293

    CAS  Google Scholar 

  41. Becker FF, Sell S (1979) Differences in serum α-fetoprotein concentrations during the carcinogenic sequences resulting from exposure to diethylnitrosamine or acetaminofluorene. Cancer Res 39:1437–1442

    PubMed  CAS  Google Scholar 

  42. Zimmer R, Thomas P (2001) Mutations in the carcinoembryonic antigen gene in colorectal cancer patients: implications on liver metastasis. Cancer Res 61:2822–2826

    PubMed  CAS  Google Scholar 

  43. Janani P, Sivakumari K, Geetha A, Ravisankar B, Parthasarathy C (2011) Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. J Cancer Res Clin Oncol 136:759–770

    Article  Google Scholar 

  44. Esterbauer H, Schaur RJ, Zollner (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  45. Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxyl radical. Phytochemistry 25:383–385

    Article  CAS  Google Scholar 

  46. Hietanen E, Ahotupa M, Bartsch H (1987) Lipid peroxidation and chemically induced cancer in rats fed lipid rich diet. In: Lapis K, Kcharst S (eds) Carcinogenesis and tumor progression, vol 4. Akadémiai Kiadó, Budapest, pp 9–16

    Google Scholar 

  47. Scholz W, Schutze K, Kunz W, Schwartz M (1990) Phenobarbital enhances the formation of reactive oxygen in neoplastic rat liver nodules. Cancer Res 50:7015–7022

    PubMed  CAS  Google Scholar 

  48. Benzie IF (1996) Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. Int J Food Sci Nutr 47:233–261

    Article  PubMed  CAS  Google Scholar 

  49. Flohe L, Beckmann R, Giertz H, Loschen G (1985) Oxygen centered free radicals a mediators of inflammation. In: Sies H (ed) Oxidative stress. Academic Press, New York, p 405

    Google Scholar 

  50. Marnett LJ (1994) DNA adducts of alpha, beta-unsaturated aldehydes and dicarbonyl compounds. IARC Sci Publ 125:151–163

    PubMed  CAS  Google Scholar 

  51. Timbrell (1991) Principles of biochemical toxicology, 2nd edn. Taylor and Francis, London

    Google Scholar 

  52. Testa B, Jenner B (1976) The concept of regioselectivity in drug metabolism. J Pharm Pharmacol 28:731–744

    Article  PubMed  CAS  Google Scholar 

  53. Varnes ME, Biaglow JE (1979) Interactions of the carcinogen 4-nitroquinoline 1-oxide with the non-protein thiols of mammalian cells. Cancer Res 39:2960–2965

    PubMed  CAS  Google Scholar 

  54. Bansal AK, Bansal M, Soni G, Bhatnagar D (2005) Protective role of vitamin E pretreatment on N-nitrosodiethylamine induced oxidative stress in rat liver. Chem Biol Interact 156:101–111

    Article  PubMed  CAS  Google Scholar 

  55. Sreepriya M, Bali G (2005) Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Fitoterapia 76:549–555

    Article  PubMed  CAS  Google Scholar 

  56. Rao GMM, Rao CHV, Pushpangadan P, Annie S (2006) Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. J Ethnopharmacol 103:484–490

    Article  PubMed  CAS  Google Scholar 

  57. Bergmeyer HU, Bernt E (1974) Aminotransferases and related enzymes. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2, 2nd edn. Academic Press, New York, pp 735–763

    Google Scholar 

  58. George SG (1994) Enzymology and molecular biology of phase II xenobiotic-conjugating enzymes in the fish. In: Malins DC, Ostrander GK (eds) Aquatic toxicology: molecular biochemical and cellular perspectives. Lewis Publishers, CRC Press, New York, pp 37–85

    Google Scholar 

  59. Erickson RH, Zakim DA (1978) Preparation and properties of a phospholipid-free form of microsomal UDP glucuronyl transferase. Biochemistry 17:3706–3711

    Article  PubMed  CAS  Google Scholar 

  60. Chapple ILC (1997) Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296

    Article  PubMed  CAS  Google Scholar 

  61. Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144

    Article  PubMed  CAS  Google Scholar 

  62. Choi EY, Hwang HJ, Kim IH, Nam TJ (2009) Protective effects of a polysaccharide from Hizikia fusiformis against ethanol toxicity in rats. Food Chem Toxicol 47:134–139

    Article  PubMed  CAS  Google Scholar 

  63. Yang BS, Ma YJ, Wang Y, Chen LY, Bi MR, Yan BZ, Bai L, Zhou H, Wang FX (2007) Protective effect and mechanism of stronger neo-minophagen C against fulminant hepatic failure. World J Gastroenterol 13:462–466

    PubMed  CAS  Google Scholar 

  64. Leifeld L, Nattermann J, Fielenbach M, Schmitz V, Sauerbruch T, Spengler U (2006) Intrahepatic activation of caspases in human fulminant hepatic failure. Liver Int 26:872–879

    Article  PubMed  CAS  Google Scholar 

  65. Ramakrishnan G, Raghavendran HR, Vinodhkumar, Devaki T (2006) Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chem Biol Interact 161:104–114

    Article  PubMed  CAS  Google Scholar 

  66. Pathak S, Bukhsh ARK (2007) Assessment of hepatocellular damage and hematological alterations in mice chronically fed p-dimethyl aminoazobenzene and Phenobarbital. Exp Mol Pathol 83:104–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to Dr. R.Venkatakrishna Murali, M.D., Ph.D., Professor and Head, Department of Pharmacology and Environmental Toxicology, Dr. ALMPGIBMS, the University of Madras, Taramani, Chennai, India, for providing the laboratory facilities, and Dr. Stephen Poole, Parenterals Section Leader, the National Institute for Biological Standards and Control, South Mimms, UK, who gifted the TNF-α antibody for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maruthaiveeran Periyasamy Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hari Babu, L., Perumal, S. & Balasubramanian, M.P. Myrtenal, a natural monoterpene, down-regulates TNF-α expression and suppresses carcinogen-induced hepatocellular carcinoma in rats. Mol Cell Biochem 369, 183–193 (2012). https://doi.org/10.1007/s11010-012-1381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1381-0

Keywords

Navigation