Skip to main content
Log in

Esculetin promotes type I procollagen expression in human dermal fibroblasts through MAPK and PI3K/Akt pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Type I collagen is the major constituent of the skin and the reduction of dermal type I collagen content is closely associated with the intrinsic skin aging. We here found that esculetin, 6,7-dihydroxycoumarin, strongly induces type I procollagen expression in human dermal fibroblasts. Esculetin not only increased protein levels of type I procollagen but also increased mRNA levels of COL1A1 but not COL1A2. Esculetin activated the MAPKs (ERK1/2, p38, JNK) and PI3K/Akt pathways, through which it promoted the type I procollagen expression. We also demonstrated that the binding motifs for transcription factor Sp1 occur with the highest frequency in the COL1A1 promoter and that esculetin increases the Sp1 expression through the MAPK and PI3K/Akt pathways. These results suggest that esculetin promotes type I procollagen expression through the MAPK and PI3K/Akt pathways and that Sp1 might be involved in the esculetin-induced type I procollagen expression via activation of the COL1A1 transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rittie L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1:705–720

    Article  PubMed  CAS  Google Scholar 

  2. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  PubMed  CAS  Google Scholar 

  3. Chung JH, Seo JY, Choi HR et al (2001) Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol 117:1218–1224

    Article  PubMed  CAS  Google Scholar 

  4. Varani J, Warner RL, Gharaee-Kermani M et al (2000) Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol 114:480–486

    Article  PubMed  CAS  Google Scholar 

  5. Varani J, Dame MK, Rittie L et al (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868

    Article  PubMed  CAS  Google Scholar 

  6. Takeda K, Gosiewska A, Peterkofsky B (1992) Similar, but not identical, modulation of expression of extracellular matrix components during in vitro and in vivo aging of human skin fibroblasts. J Cell Physiol 153:450–459

    Article  PubMed  CAS  Google Scholar 

  7. Ikeda H, Sunazuka T, Suzuki H et al (2008) EM703, the new derivative of erythromycin, inhibits transcription of type I collagen in normal and scleroderma fibroblasts. J Dermatol Sci 49:195–205

    Article  PubMed  CAS  Google Scholar 

  8. Park WY, Park JS, Cho KA et al (2000) Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 275:20847–20852

    Article  PubMed  CAS  Google Scholar 

  9. Kim SR, Park JH, Lee ME et al (2008) Selective COX-2 inhibitors modulate cellular senescence in human dermal fibroblasts in a catalytic activity-independent manner. Mech Ageing Dev 129:706–713

    Article  PubMed  CAS  Google Scholar 

  10. Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  11. Leevers SJ, Vanhaesebroeck B, Waterfield MD (1999) Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 11:219–225

    Article  PubMed  CAS  Google Scholar 

  12. Kaneko T, Tahara S, Takabayashi F (2003) Suppression of lipid hydroperoxide-induced oxidative damage to cellular DNA by esculetin. Biol Pharm Bull 26:840–844

    Article  PubMed  CAS  Google Scholar 

  13. Kim SH, Kang KA, Zhang R et al (2008) Protective effect of esculetin against oxidative stress-induced cell damage via scavenging reactive oxygen species. Acta Pharmacol Sin 29:1319–1326

    Article  PubMed  CAS  Google Scholar 

  14. Lee BC, Lee SY, Lee HJ et al (2007) Anti-oxidative and photo-protective effects of coumarins isolated from Fraxinus chinensis. Arch Pharm Res 30:1293–1301

    Article  PubMed  CAS  Google Scholar 

  15. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE et al (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10:3813–3833

    Article  PubMed  CAS  Google Scholar 

  16. Witaicenis A, Seito LN, Di Stasi LC (2010) Intestinal anti-inflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis. Chem Biol Interact 186:211–218

    Article  PubMed  CAS  Google Scholar 

  17. Kawase M, Sakagami H, Hashimoto K et al (2003) Structure-cytotoxic activity relationships of simple hydroxylated coumarins. Anticancer Res 23:3243–3246

    PubMed  CAS  Google Scholar 

  18. Kuo HC, Lee HJ, Hu CC et al (2006) Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells. Toxicol Appl Pharmacol 210:55–62

    Article  PubMed  CAS  Google Scholar 

  19. Park C, Jin CY, Kim GY et al (2008) Induction of apoptosis by esculetin in human leukemia U937 cells through activation of JNK and ERK. Toxicol Appl Pharmacol 227:219–228

    Article  PubMed  CAS  Google Scholar 

  20. Wang CJ, Hsieh YJ, Chu CY et al (2002) Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett 183:163–168

    Article  PubMed  CAS  Google Scholar 

  21. Asano Y, Ihn H, Yamane K et al (2004) Phosphatidylinositol 3-kinase is involved in alpha2(I) collagen gene expression in normal and scleroderma fibroblasts. J Immunol 172:7123–7135

    PubMed  CAS  Google Scholar 

  22. Sato M, Shegogue D, Gore EA et al (2002) Role of p38 MAPK in transforming growth factor beta stimulation of collagen production by scleroderma and healthy dermal fibroblasts. J Invest Dermatol 118:704–711

    Article  PubMed  CAS  Google Scholar 

  23. Chetty A, Cao GJ, Nielsen HC (2006) Insulin-like growth factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr Res 60:389–394

    Article  PubMed  CAS  Google Scholar 

  24. Jinnin M, Ihn H, Yamane K et al (2004) Interleukin-13 stimulates the transcription of the human alpha2(I) collagen gene in human dermal fibroblasts. J Biol Chem 279:41783–41791

    Article  PubMed  CAS  Google Scholar 

  25. Lee J, Jung E, Yu H et al (2008) Mechanisms of carvacrol-induced expression of type I collagen gene. J Dermatol Sci 52:160–169

    Article  PubMed  CAS  Google Scholar 

  26. Jimenez SA, Gaidarova S, Saitta B et al (2001) Role of protein kinase C-delta in the regulation of collagen gene expression in scleroderma fibroblasts. J Clin Invest 108:1395–1403

    PubMed  CAS  Google Scholar 

  27. Wierstra I (2008) Sp1: emerging roles—beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372:1–13

    Article  PubMed  CAS  Google Scholar 

  28. Sysa P, Potter JJ, Liu X et al (2009) Transforming growth factor-beta1 up-regulation of human alpha(1)(I) collagen is mediated by Sp1 and Smad2 transacting factors. DNA Cell Biol 28:425–434

    Article  PubMed  CAS  Google Scholar 

  29. Kypriotou M, Beauchef G, Chadjichristos C et al (2007) Human collagen Krox up-regulates type I collagen expression in normal and scleroderma fibroblasts through interaction with Sp1 and Sp3 transcription factors. J Biol Chem 282:32000–32014

    Article  PubMed  CAS  Google Scholar 

  30. Chuang JY, Wang YT, Yeh SH et al (2008) Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Mol Biol Cell 19:1139–1151

    Article  PubMed  CAS  Google Scholar 

  31. Kanda N, Koike S, Watanabe S (2005) Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes. J Pharmacol Exp Ther 315:796–804

    Article  PubMed  CAS  Google Scholar 

  32. Trisciuoglio D, Iervolino A, Candiloro A et al (2004) bcl-2 induction of urokinase plasminogen activator receptor expression in human cancer cells through Sp1 activation: involvement of ERK1/ERK2 activity. J Biol Chem 279:6737–6745

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0007188), a grant from the National R&D Program for Cancer Control, Ministry for Health and welfare, Republic of Korea (1020420), and the Nutraceutical Bio Brain Korea 21 Project and Well-being Bioproducts Regional Innovation Center Project of Kangwon National University in 2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong A. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Kim, S.R., An, H.J. et al. Esculetin promotes type I procollagen expression in human dermal fibroblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem 368, 61–67 (2012). https://doi.org/10.1007/s11010-012-1342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1342-7

Keywords

Navigation