Skip to main content
Log in

Taurine postponed the replicative senescence of rat bone marrow-derived multipotent stromal cells in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aging of many mammalian tissues is associated with replicative decline in somatic stem cells. Postponing this decline is a direct way of anti-aging. Bone marrow-derived multipotent stromal cells (BMSCs) hold promise for an increasing list of therapeutic uses due to their multilineage potential. Clinical application of BMSCs requires abundant cells that can be overcome by ex vivo expansion of cells, but often facing the replicative senescence problem. We demonstrated that taurine exhibited anti-replicative senescence effect on rat BMSCs by promoting colony forming unit-fibroblast formation and cell proliferation, shortening cell population doubling time, enormously inhibiting senescence-associated beta-galactosidase activity and slowing the loss of differentiation potential, while having no significant effect on the maximum passage number and total culture time, and slight influences on the cell surface CD molecules expressions. Taurine is a quite safe antioxidant and nutrient extensively used in food addition and clinical treatment. These suggested that taurine is a promising anti-replicative senescence additive for ex vivo expansion of BMSCs in experimental and clinical cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wagner W, Bork S, Horn P et al (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846

    Article  PubMed  Google Scholar 

  2. Galderisi U, Helmbold H, Squillaro T et al (2009) In vitro senescence of rat mesenchymal stem cells is accompanied by downregulation of stemness-related and DNA damage repair genes. Stem Cells Dev 18:1033–1042

    Article  PubMed  CAS  Google Scholar 

  3. Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    PubMed  CAS  Google Scholar 

  4. Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951

    Article  PubMed  CAS  Google Scholar 

  5. Green T, Fellman JH, Eicher AL et al (1991) Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta 1073:91–97

    Article  PubMed  CAS  Google Scholar 

  6. Rosado JO, Salvador M, Bonatto D (2007) Importance of the trans-sulfuration pathway in cancer prevention and promotion. Mol Cell Biochem 301:1–12

    Article  PubMed  CAS  Google Scholar 

  7. Letavayová L, Marková E, Hermanská K (2006) Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. DNA Repair (Amst) 5:602–610

    Article  Google Scholar 

  8. Schuller-Levis G, Gordon RE, Park E et al (1995) Taurine protects rat bronchioles from acute ozone-induced lung inflammation and hyperplasia. Exp Lung Res 21:877–888

    Article  PubMed  CAS  Google Scholar 

  9. Wang QJ, Giri SN, Hyde DM et al (1989) Effects of taurine on bleomycin-induced lung fibrosis in hamsters. Proc Soc Exp Biol Med 190:330–338

    PubMed  CAS  Google Scholar 

  10. Gordon RE, Shaked AA, Solano DF (1986) Taurine protects hamster bronchioles from acute NO2-induced alterations. A histologic, ultrastructural, and freeze-fracture study. Am J Pathol 125:585–600

    PubMed  CAS  Google Scholar 

  11. Wang Q, Hollinger MA, Giri SN (1992) Attenuation of amiodarone-induced lung fibrosis and phospholipidosis in hamsters by taurine and/or niacin treatment. J Pharmacol Exp Ther 262:127–132

    PubMed  CAS  Google Scholar 

  12. Pasantes-Morales H, Franco R (2002) Influence of protein tyrosine kinases on cell volume changeinduced taurine release. Cerebellum 1:103–109

    Article  PubMed  CAS  Google Scholar 

  13. Frosini M, Sesti C, Saponara S et al (2003) A specific taurine recognition site in the rabbit brain is responsible for taurine effects on thermoregulation. Br J Pharmacol 139:487–494

    Article  PubMed  CAS  Google Scholar 

  14. El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  Google Scholar 

  15. Oja SS, Saransaari P (2007) Pharmacology of Taurine. Proc West Pharmacol Soc 50:8–15

    PubMed  CAS  Google Scholar 

  16. Lewis DA (1984) Endogenous anti-inflammatory factors. Biochem Pharmacol 33:1705–1714

    Article  PubMed  CAS  Google Scholar 

  17. Hernández-Benítez R, Pasantes-Morales H, Torres Saldaña I, Ramos-Mandujano G (2010) Taurine dtimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 88:1673–1681

    PubMed  Google Scholar 

  18. Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells-a continuous and organized process. PLoS One 5:e2213

    Article  Google Scholar 

  19. Ibrahim EM, Stewart RL, Corke K et al (2006) Upregulation of CD44 expression by interleukins 1, 4, and 13, transforming growth factor-beta1, estrogen, and progestogen in human cervical adenocarcinoma cell lines. Int J Gynecol Cancer 16:1631–1642

    Article  PubMed  CAS  Google Scholar 

  20. Bates RC, Edwards NS, Burns GF (2001) A CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells. Cancer Res 61:5275

    PubMed  CAS  Google Scholar 

  21. Huebener P, Abou-Khamis T, Zymek P et al (2008) CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 180:2625–2633

    PubMed  CAS  Google Scholar 

  22. Bavaresco L, Bernardi A, Braganhol E et al (2008) The role of ecto-5′-nucleotidase/CD73 in glioma cell line Proliferation. Mol Cell Biochem 319:61–68

    Article  PubMed  CAS  Google Scholar 

  23. Bavaresco L, Bernardi A, Braganhol E et al (2007) Dexamethasone inhibits proliferation and stimulates ecto-5′-nucleotidase/CD73 activity in C6 rat glioma cell line. J Neurooncol 84:1–8

    Article  PubMed  CAS  Google Scholar 

  24. Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26

    Article  PubMed  CAS  Google Scholar 

  25. Alberts B, Lewis J, Raff M et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  26. Node K, Kitakaze M, Minamino T et al (1997) Activation of ecto-5′-nucleotidase by protein kinase C and its role in ischaemic tolerance in the canine heart. Br J Pharmacol 120:273–281

    Article  PubMed  CAS  Google Scholar 

  27. New DC, Wong YH (2007) Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2:2

    Article  PubMed  Google Scholar 

  28. Ito K, Lim AC, Salto-Tellez M et al (2008) RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14:226–237

    Article  PubMed  CAS  Google Scholar 

  29. Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19–39

    Article  PubMed  CAS  Google Scholar 

  30. Conboy IM, Conboy MJ, Smythe GM et al (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    Article  PubMed  CAS  Google Scholar 

  31. Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101:1109–1124

    Article  PubMed  CAS  Google Scholar 

  32. Ling L, Nurcombe V, Cool SM (2009) Wnt signaling controls the fate of mesenchymal stem cells. Gene 433:1–7

    Article  PubMed  CAS  Google Scholar 

  33. Park E, Park SY, Wang C et al (2002) Cloning of murine cysteine sulphonic acid decarboxylase and its mRNA expression in murine tissues. Biochim Biophys Acta 1574:403–406

    PubMed  CAS  Google Scholar 

  34. Bonab MM, Alimoghaddam K, Talebian F et al (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Bo Tao for technical support.

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, H., Zhao, G., Luo, J. et al. Taurine postponed the replicative senescence of rat bone marrow-derived multipotent stromal cells in vitro. Mol Cell Biochem 366, 259–267 (2012). https://doi.org/10.1007/s11010-012-1304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1304-0

Keywords

Navigation