Skip to main content

Advertisement

Log in

Importance of the trans-sulfuration pathway in cancer prevention and promotion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The trans-sulfuration pathway is a biochemical mechanism that links methionine metabolism to the biosynthesis of cellular redox-controlling molecules, like cysteine, glutathione, and taurine. While there is some knowledge about the metabolic intermediates and enzymes that participate in trans-sulfuration, little is known about the physiological importance of this mechanism. Deficiencies within the trans-sulfuration pathway induces (i) the generation of reactive species of oxygen (ROS) and halogens (RHS), (ii) homocyst(e)ine accumulation, and (iii) the synthesis of proinflammatory molecules by macrophages, and contribute to humans pathologies like atherosclerosis and tumor development. In this review we outline the role of this biochemical pathway in tumor development and analyze current findings on the role of trans-sulfuration in mammalian physiology. The potential relationship between chronic inflammation, and tumor and atherosclerotic development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cellarier E, Durando X, Vasson MP, Farges MC, Demiden A, Maurizis JC, Madelmont JC, Chollet P (2003) Methionine dependency and cancer treatment. Cancer Treat Rev 29:489–499

    PubMed  CAS  Google Scholar 

  2. Kokkinakis DM (2006) Methionine-stress: a pleiotropic approach in enhancing the efficacy of chemotherapy. Cancer Lett 233:195–207

    PubMed  CAS  Google Scholar 

  3. Finkelstein JD, Martin JJ (2000) Homocysteine. Int J Biochem Cell Biol 32:385–389

    PubMed  CAS  Google Scholar 

  4. Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    PubMed  CAS  Google Scholar 

  5. Nobori T, Szinai I, Amox D, Parker B, Olopade OI, Buchhagen DL, Carson DA (1993) Methylthioadenosine phosphorylase deficiency in human non-small cell lung cancers. Cancer Res 53:1098–1101

    PubMed  CAS  Google Scholar 

  6. Traweek ST, Riscoe MK, Ferro AJ, Braziel RM, Magenis RE, Fitchen JH (1988) Methylthioadenosine phosphorylase deficiency in acute leukemia: pathologic, cytogenetic, and clinical features. Blood 71:1568–1573

    PubMed  CAS  Google Scholar 

  7. Nobori T, Karras JG, Della Ragione F, Waltz TA, Chen PP, Carson DA (1991) Absence of methylthioadenosine phosphorylase in human gliomas. Cancer Res 51:3193–3197

    PubMed  CAS  Google Scholar 

  8. Fitchen JH, Riscoe MK, Dana BW, Lawrence HJ, Ferro AJ (1986) Methylthioadenosine phosphorylase deficiency in human leukemias and solid tumors. Cancer Res 46:5409–5412

    PubMed  CAS  Google Scholar 

  9. Mato JM, Corrales FJ, Lu SC, Avila MA (2002) S-Adenosylmethionine: a control switch that regulates liver function. FASEB J 16:15–26

    PubMed  CAS  Google Scholar 

  10. Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14:R139-R147

    PubMed  CAS  Google Scholar 

  11. Lu SC (1999) Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13:1169–1183

    PubMed  CAS  Google Scholar 

  12. Tarver H, Schmidt CLA (1939) The conversion of methionine to cystine: experiments with radioactive sulfur. J Biol Chem 130:67–80

    CAS  Google Scholar 

  13. Beatty PW, Reed DJ (1980) Involvement of the cystathionine pathway in the biosynthesis of glutathione by isolated rat hepatocytes. Arch Biochem Biophys 204:80–87

    PubMed  CAS  Google Scholar 

  14. Prudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R (2006) S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proc Natl Acad Sci USA 103:6489–6494

    PubMed  CAS  Google Scholar 

  15. Cooper AJL (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52:187–222

    PubMed  CAS  Google Scholar 

  16. Mosharov E, Cranford MR, Banerjee R (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39:13005–13011

    PubMed  CAS  Google Scholar 

  17. Vitvitsky V, Dayal S, Stabler S, Zhou Y, Wang H, Lentz SR, Banerjee R (2004) Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. Am J Physiol Regul Integr Comp Physiol 287:R39-R46

    PubMed  CAS  Google Scholar 

  18. Martinov MV, Vitvitsky VM, Mosharov EV, Banerjee R, Ataullakhanov FI (2000) A substrate switch: a new mode of regulation in the methionine metabolic pathway. J Theor Biol 204:521–532

    PubMed  CAS  Google Scholar 

  19. Neuhauser-Berthold M, Kuhfus A, Bassler KH (1988) Utilization of glutathione disulfide as cysteine source during long-term parenteral nutrition in the growing rat. Metabolism 37:796–801

    PubMed  CAS  Google Scholar 

  20. Lu SC, Huang HY (1994) Comparison of sulfur amino acid utilization for GSH synthesis between HepG2 cells and cultured rat hepatocytes. Biochem Pharmacol 47:859–869

    PubMed  CAS  Google Scholar 

  21. Guo H, Lishko V, Herrera H, Groce A, Kubota T, Hoffman RM (1993) Therapeutic tumor-specific cell-cycle block induced by MET starvation in vivo, Cancer Res 53:5676–5679

    PubMed  CAS  Google Scholar 

  22. Kokkinakis DM, Schold SC, Hori H, Nobori T (1997) Effect of long-term depletion of plasma MET on the growth and survival of human brain tumor xenografts in athymic mice. Nutr Cancer 29:195–204

    Article  PubMed  CAS  Google Scholar 

  23. Halpern BC, Clark BR, Hardy DN, Halpern RM, Smith RA (1974) The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci USA 71:1133–1136

    PubMed  CAS  Google Scholar 

  24. Breillout F, Antoine E, Poupon MF (1990) Methionine dependency of malignant tumors: a possible approach for therapy. J Natl Cancer Inst 82:1628–1632

    PubMed  CAS  Google Scholar 

  25. Stern PH, Hoffman RM (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76:629–639

    PubMed  CAS  Google Scholar 

  26. Guo HY, Herrera H, Groce A, Hoffman RM (1993) Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Cancer Res 53:2479–2483

    PubMed  CAS  Google Scholar 

  27. Judde JG, Ellis M, Frost P (1989) Biochemical analysis of the role of transmethylation in the MET dependence of tumor cells. Cancer Res 29:4859–4865

    Google Scholar 

  28. Palmer JL, Abeles RH (1979) Mechanism of action of S-adenosylhomocysteinase. J Biol Chem 254:1217–1226

    PubMed  CAS  Google Scholar 

  29. Kloor D, Osswald H (2004) S-Adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol Sci 25:294–297

    PubMed  CAS  Google Scholar 

  30. Fujioka M, Takata Y (1981) S-Adenosylhomocysteine hydrolase from rat liver. Purification and some properties J Biol Chem 256:1631–1635

    CAS  Google Scholar 

  31. Hu Y, Komoto J, Huang Y, Gomi T, Ogawa H, Takata Y, Fujioka M, Takusagawa F (1999) Crystal structure of S-adenosylhomocysteine hydrolase from rat liver. Biochemistry 38:8323–8333

    PubMed  CAS  Google Scholar 

  32. Turner MA, Yuan CS, Borchardt RT, Hershfield MS, Smith GD, Howell PL (1998) Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength. Nat Struct Biol 5:369–376

    PubMed  CAS  Google Scholar 

  33. Kloor D, Fuchs S, Petroktistis F, Delabar U, Muhlbauer B, Quast U, Osswald H (1998) Effects of ions on adenosine binding and enzyme activity of purified S-adenosylhomocysteine hydrolase from bovine kidney. Biochem Pharmacol 56:1493–1496

    PubMed  CAS  Google Scholar 

  34. Mohandas T, Sparkes RS, Suh EJ, Hershfield MS (1984) Regional localization of the human genes for S-adenosylhomocysteine hydrolase (cen----q131) and adenosine deaminase (q131----qter) on chromosome 20. Hum Genet 66:292–295

    PubMed  CAS  Google Scholar 

  35. Baric I, Fumic K, Glenn B, Cuk M, Schulze A, Finkelstein JD, James SJ, Mejaski-Bosnjak V, Pazanin L, Pogribny IP, Rados M, Sarnavka V, Scukanec-Spoljar M, Allen RH, Stabler S, Uzelac L, Vugrek O, Wagner C, Zeisel S, Mudd SH (2004) S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci USA 101:4234–4239

    PubMed  CAS  Google Scholar 

  36. Gellekink H, den Heijer M, Kluijtmans LA, Blom HJ (2004) Effect of genetic variation in the human S-adenosylhomocysteine hydrolase gene on total homocysteine concentrations and risk of recurrent venous thrombosis. Eur J Hum Genet 12:942–948

    PubMed  CAS  Google Scholar 

  37. Kraus JP, Janosik M, Kozich V, Mandell R, Shih V, Sperandeo MP, Sebastio G, de Franchis R, Andria G, Kluijtmans LA, Blom H, Boers GH, Gordon RB, Kamoun P, Tsai MY, Kruger WD, Koch HG, Ohura T, Gaustadnes M (1999) Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat 13:362–375

    PubMed  CAS  Google Scholar 

  38. Taoka S, Ohja S, Shan X, Kruger WD, Banerjee R (1998) Evidence for hememediated redox regulation of human cystathionine β-synthase activity. J Biol Chem 273:25179–25184

    PubMed  CAS  Google Scholar 

  39. Meier M, Janosik M, Kery V, Kraus JP, Burkhard P (2001) Structure of human cystathionine β-synthase: a unique pyridoxal 5’-phosphate-dependent heme protein. EMBO J 20:3910–3916

    PubMed  CAS  Google Scholar 

  40. Oliveriusova J, Kery V, Maclean KN, Kraus JP (2002) Deletion mutagenesis of human cystathionine β-synthase: impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem 277:48386–48394

    PubMed  CAS  Google Scholar 

  41. Shan X, Dunbrack RL, Christopher SA, Kruger WD (2001) Mutations in the regulatory domain of cystathionine β-synthase can functionally suppress patient-derived mutations in cis. Hum Mol Genet 10:635–643

    PubMed  CAS  Google Scholar 

  42. Janosik M, Kery V, Gaustadnes M, Maclean KN, Kraus JP (2001) Regulation of human cystathionine β-synthase by S-adenosyl-l-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry 40:10625–10633

    PubMed  CAS  Google Scholar 

  43. Zou CG, Banerjee R (2003) Tumor necrosis factor-α-induced targeted proteolysis of cystathionine β-synthase modulates redox homeostasis. J Biol Chem 278:16802–16808

    PubMed  CAS  Google Scholar 

  44. Yang G, Cao K, Wu L, Wang R (2004) Cystathionine γ-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J Biol Chem 279:49199–49205

    PubMed  CAS  Google Scholar 

  45. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    PubMed  CAS  Google Scholar 

  46. Weiss N, Heydrick S, Zhang Y -Y, Bierl C, Cap A, Loscalzo J (2002) Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine β-synthase-deficient mice. Arterioscler Thromb Vasc Biol 22:34–41

    PubMed  CAS  Google Scholar 

  47. Wu LL, Wu JT (2002) Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 322:21–28

    PubMed  CAS  Google Scholar 

  48. Xu D, Neville R, Finkel T (2000) Homocysteine accelerates endothelial cell senescence. FEBS Lett 470:20–24

    PubMed  CAS  Google Scholar 

  49. Ishii I, Akahoshi N, Yu X–N, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine γ-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123

    PubMed  CAS  Google Scholar 

  50. Messerschmidt A, Worbs M, Steegborn C, Wahl MC, Huber R, Laber B, Clausen T (2003) Determinants of enzymatic specificity in the cys-met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. Biol Chem 384:373–386

    PubMed  CAS  Google Scholar 

  51. Wang J, Hegele RA (2003) Genomic basis of cystathioninuria (MIM 219500) revealed by multiple mutations in cystathionine gamma-lyase (CTH). Hum Genet 112:404–408

    PubMed  CAS  Google Scholar 

  52. Wong LT, Hardwick DF, Applegarth DA, Davidson AG (1979) Review of metabolic screening program of children’s hospital, Vancouver, British Columbia. 1971–1977 Clin Biochem 12:167–172

    CAS  Google Scholar 

  53. Lemieux B, Auray-Blais C, Giguere R, Shapcott D, Scriver CR (1988) Newborn urine screening experience with over one million infants in the Quebec Network of Genetic Medicine. J Inherit Metab Dis 11:45–55

    PubMed  CAS  Google Scholar 

  54. Letavayová L, Marková E, Hermanská K, Vlčková V, Vlasákova D, Chovaneca M, Brozmanova J (2006) Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. DNA Repair 5:602–610

    PubMed  Google Scholar 

  55. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    PubMed  CAS  Google Scholar 

  56. Laval J (1996) Role of DNA repair enzymes in the cellular resistance to oxidative stress. Pathol Biol 44:14–24

    PubMed  CAS  Google Scholar 

  57. Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150:S60-S79

    PubMed  CAS  Google Scholar 

  58. Bjelland S, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res Fundam Mol Mech Mut 531:37–80

    CAS  Google Scholar 

  59. Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    PubMed  CAS  Google Scholar 

  60. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    PubMed  CAS  Google Scholar 

  61. Cerutti PA, Trump BF (1991) Inflammation and oxidative stress in carcinogenesis. Cancer Cells 3:1–7

    PubMed  CAS  Google Scholar 

  62. Tasatargil A, Sadan G, Karasu E (2006) Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation. Pulm Pharmacol Ther (in press)

  63. Martinet W, Knaapen MWM, De Meyer GRY, Herman AG, Kockx MM (2002) Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106:927–932

    PubMed  CAS  Google Scholar 

  64. Virág L, Szabó C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    PubMed  Google Scholar 

  65. Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31:446–454

    PubMed  CAS  Google Scholar 

  66. Burkle A (2001) Physiology and pathophysiology of poly(ADP-ribosyl)ation. BioEssays 23:795–806

    PubMed  CAS  Google Scholar 

  67. Stenerlow B, Karlsson KH, Cooper B, Rydberg B (2003) Measurement of prompt DNA double-strand breaks in mammalian cells without including heat-labile sites: results for cells deficient in nonhomologous end joining. Radiat Res 159:502–510

    PubMed  CAS  Google Scholar 

  68. Sutherland BM, Bennett PV, Sidorkina O, Laval J (2000) Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA 97:103–108

    PubMed  CAS  Google Scholar 

  69. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279:55117–55126

    PubMed  CAS  Google Scholar 

  70. Guyton KZ, Kensler TW (1993) Oxidative mechanisms in carcinogenesis. Br Med Bull 49:523–544

    PubMed  CAS  Google Scholar 

  71. Cerda S, Weitzman SA (1997) Influence of oxygen radical injury on DNA methylation. Mut Res Rev Mutat Res 386:141–152

    CAS  Google Scholar 

  72. Jackson JH (1994) Potential molecular mechanisms of oxidant-induced carcinogenesis. Environ Health Perspect 102:155–158

    PubMed  CAS  Google Scholar 

  73. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  74. Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:1–39

    Google Scholar 

  75. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    PubMed  CAS  Google Scholar 

  76. Hirono I (1961) Mechanism of natural and acquired resistance to methyl-bis-(beta-chlorethyl)-amine N- oxide in ascites tumors. Gann 52:39–48

    PubMed  CAS  Google Scholar 

  77. Carretero J, Obrador E, Anasagasti MJ, Martin JJ, Vidal-Vanaclocha F, Estrela JM (1999) Growth–associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis 17:567–574

    PubMed  CAS  Google Scholar 

  78. Pendyala L, Velagapudi S, Toth K, Zdanowicz J, Glaves D, Slocum H, Perez R, Huben R, Creaven PJ, Raghavan D (1997) Translational studies of glutathione in bladder cancer cell lines and human specimens. Clin Cancer Res 3:793–798

    PubMed  CAS  Google Scholar 

  79. Honda T, Coppola S, Ghibelli L, Cho SH, Kagawa S, Spurgers KB, Brisbay SM, Roth JA, Meyn RE, Fang B, McDonnell TJ (2004) GSH depletion enhances adenoviral bax-induced apoptosis in lung cancer cells. Cancer Gene Ther 11:249–255

    PubMed  CAS  Google Scholar 

  80. Berger SJ, Gosky D, Zborowska E, Willson JK, Berger NA (1994) Sensitive enzymatic cycling assay for glutathione: measurements of glutathione content and its modulation by buthionine sulfoximine in vivo and in vitro in human colon cancer. Cancer Res 54:4077–4083

    PubMed  CAS  Google Scholar 

  81. Perry RR, Mazetta JA, Levin M, Barranco SC (1993) Glutathione levels and variability in breast tumors and normal tissue. Cancer 72:783–787

    PubMed  CAS  Google Scholar 

  82. Jakobisiak M, Lasek W, Golab J (2003) Natural mechanisms protecting against cancer. Immunol Lett 90:103–122

    PubMed  CAS  Google Scholar 

  83. Sadani GR, Nadkarni GD (1996) Role of tissue antioxidant defence in thyroid cancers. Cancer Lett 109:231–235

    PubMed  CAS  Google Scholar 

  84. Schadendorf D, Jurgovsky K, Kohlmus CM, Czarnetzki BM (1995) Glutathione and related enzymes in tumor progression and metastases of human melanoma. J Invest Dermatol 105:109–112

    PubMed  CAS  Google Scholar 

  85. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375

    PubMed  CAS  Google Scholar 

  86. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    PubMed  CAS  Google Scholar 

  87. Revesz L, Edgren MR, Wainson AA (1994) Selective toxicity of buthionine sulfoximine (BSO) to melanoma cells in vitro and in vivo. Int J Radiat Oncol Biol Phys 29:403–406

    PubMed  CAS  Google Scholar 

  88. Thrall BD, Meadows GG (1991) Induction of glutathione content in murine melanocytes after transformation with c-H-ras oncogene. Carcinogenesis 12:1319–1323

    PubMed  CAS  Google Scholar 

  89. Uthus EO, Brown-Borg HM (2006) Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech Ageing Dev 127:444–450

    PubMed  CAS  Google Scholar 

  90. Brown-Borg HM, Rakoczy SG, Uthus EO (2005) Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. Mech Ageing Dev 126:389–398

    PubMed  CAS  Google Scholar 

  91. Park E, Park SY, Wang C, Xu J, LaFauci G, Schuller-Levis G (2002) Cloning of murine cysteine sulphonic acid decarboxylase and its mRNA expression in murine tissues. Biochim Biophys Acta 1574:403–406

    PubMed  CAS  Google Scholar 

  92. Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    PubMed  CAS  Google Scholar 

  93. Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951

    PubMed  CAS  Google Scholar 

  94. Fukuda K, Hirai Y, Yoshida H, Hakajima T, Usii T (1982) Free amino acid content of lymphocytes and granulocytes compared. Clin Chem 28:1758–1761

    PubMed  CAS  Google Scholar 

  95. Green T, Fellman JH, Eicher AL, Pratt KJ (1991) Antioxidant role and subcellular location of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta 1073:91–97

    PubMed  CAS  Google Scholar 

  96. Schuller-Levis G, Gordon RE, Park E, Pendino KJ, Laskin D (1995) Taurine protects rat bronchioles from acute ozone-induced lung inflammation and hyperplasia. Exp Lung Res 21:877–888

    PubMed  CAS  Google Scholar 

  97. Wang QJ, Giri SN, Hyde DM, Nakashima JM (1989) Effects of taurine on bleomycin-induced lung fibrosis in hamsters. Proc Soc Exp Biol Med 190:330–338

    PubMed  CAS  Google Scholar 

  98. Gordon RE, Shaked AA, Solano DF (1986) Taurine protects hamster bronchioles from acute NO2-induced alterations. A histologic, ultrastructural, and freeze-fracture study Am J Pathol 125:585–600

    CAS  Google Scholar 

  99. Wang Q, Hollinger MA, Giri SN (1992) Attenuation of amiodarone-induced lung fibrosis and phospholipidosis in hamsters by taurine and/or niacin treatment. J Pharmacol Exp Ther 262:127–132

    PubMed  CAS  Google Scholar 

  100. Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226:195–202

    PubMed  CAS  Google Scholar 

  101. Kawai Y, Morinaga H, Kondo H, Miyoshi N, Nakamura Y, Uchida K, Osawa T (2004) Endogenous formation of novel halogenated 2′-deoxycitidine. J Biol Chem 279:51241–51249

    PubMed  CAS  Google Scholar 

  102. Henderson JP, Byun J, Takeshita J, Heinecke JW (2003) Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissues. J Biol Chem 278:23522–23528

    PubMed  CAS  Google Scholar 

  103. McMillen TS, Heinecke JW, LeBoeuf RC (2005) Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 111:2798–2804

    PubMed  CAS  Google Scholar 

  104. Valinluck V, Liu P, Kang JI, Burdzy A, Sowers LC (2005) 5-Halogenated pyrimidine lesions within a CpG sequence context mimic 5-methylcytosine by enhancing the binding of the methyl-CpG-binding domain of methyl-CpG-binding protein 2 (MeCP2). Nucleic Acids Res 33:3057–3064

    PubMed  CAS  Google Scholar 

  105. Li JJ, Gao R-L (2005) Should atherosclerosis be considered a cancer of the vascular wall? Med Hypotheses 64:694–698

    PubMed  CAS  Google Scholar 

  106. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS (2001) Atherosclerosis and cancer: common molecular pathway of disease development and progression. Ann N Y Acad Sci 947:271–292

    Article  PubMed  CAS  Google Scholar 

  107. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS (2001) Atherosclerosis: a cancer of blood vessels. Am J Clin Pathol 116:S97–S107

    PubMed  Google Scholar 

  108. Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Rad Biol Med 28:1387–1404

    PubMed  CAS  Google Scholar 

  109. Bartsch H (2000) Studies on biomarkers in cancer etiology and prevention: a summary and challenge of 20 years of interdisciplinary research. Mutat Res 462:V255–V279

    Google Scholar 

  110. Lamagna C, Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80:705−713

    PubMed  CAS  Google Scholar 

  111. Heidland A, Klassen A, Rutkowski P, Bahner U (2006) The contribution of Rudolf Virchow to the concept of inflammation: what is still of importance? J Nephrol 19:S102-S109

    PubMed  Google Scholar 

  112. Schwartsburd PM (2003) Chronic inflammation as inductor of procancer microenvironment: pathogenesis of dysregulated feedback control. Cancer Metastasis Rev 22:95–102

    PubMed  CAS  Google Scholar 

  113. Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150:1723–1734

    PubMed  CAS  Google Scholar 

  114. Smith GR, Missailidis S (2004) Cancer, inflammation and the AT1 and AT2 receptors. J Inflamm 1:3

    Google Scholar 

  115. Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S (2006) Mining literature for a comprehensive pathway analysis: A case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 5:1

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kátia Gonçalves dos Santos for critically reading the manuscript. This work was supported by research grants from Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Bonatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosado, J.O., Salvador, M. & Bonatto, D. Importance of the trans-sulfuration pathway in cancer prevention and promotion. Mol Cell Biochem 301, 1–12 (2007). https://doi.org/10.1007/s11010-006-9389-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9389-y

Keywords

Navigation