Skip to main content
Log in

Resveratrol mobilizes Ca2+ from intracellular stores and induces c-Jun N-terminal kinase activation in tumoral AR42J cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca2+ concentration ([Ca2+]c) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 μM and 1 mM) induced changes in [Ca2+]c, that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 μM) did not show detectable effects on [Ca2+]c. Depletion of intracellular Ca2+ stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 μM thapsigargin, blocked Ca2+ responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca2+ mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca2+]c evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca2+. In summary, the results show that resveratrol releases Ca2+ from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell’s survival/death processes in the presence of resveratrol may involve Ca2+-mediated JNK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

[Ca2+]c :

Cytosolic free Ca2+ concentration

CCK-8:

Cholecystokinin octapeptide

EGTA:

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid

ER:

Endoplasmic reticulum

Fura-2/AM:

Fura-2 acetoxymethyl ester

IP3 :

Inositol 1,4,5-trisphosphate

JNK:

c-Jun N-terminal kinase

PMCA:

Plasma membrane calcium ATPase

ROS:

Reactive oxygen species

SERCA:

Sarcoendoplasmic reticulum Ca2+-ATPase

Tps:

Thapsigargin

References

  1. Holthoff JH, Woodling KA, Doerge DR, Burns ST, Hinson JA, Mayeux PR (2010) Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem Pharmacol 80:1260–1265

    Article  PubMed  CAS  Google Scholar 

  2. Frémont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  PubMed  Google Scholar 

  3. Ray PS, Maulik G, Cordis GA, Bertelli AA, Bertelli A, Das DK (1999) The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. Free Radic Biol Med 27:160–169

    Article  PubMed  CAS  Google Scholar 

  4. Borriello A, Cucciolla V, Della Ragione F, Galletti P (2010) Dietary polyphenols: focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis 20:618–625

    Article  PubMed  CAS  Google Scholar 

  5. Elmali N, Esenkaya I, Harma A, Ertem K, Turkoz Y, Mizrak B (2005) Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm Res 54:158–162

    Article  PubMed  CAS  Google Scholar 

  6. Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720

    Article  PubMed  CAS  Google Scholar 

  7. Ma Q, Zhang M, Wang Z, Ma Z, Sha H (2011) The beneficial effect of resveratrol on severe acute pancreatitis. Ann N Y Acad Sci 1215:96–102

    Article  PubMed  CAS  Google Scholar 

  8. Szabolcs A, Varga IS, Varga C, Berkó A, Kaszaki J, Letoha T, Tiszlavicz L, Sári R, Lonovics J, Takács T (2006) Beneficial effect of resveratrol on cholecystokinin-induced experimental pancreatitis. Eur J Pharmacol 532:187–193

    Article  PubMed  CAS  Google Scholar 

  9. dos Santos AQ, Nardin P, Funchal C, de Almeida LM, Jacques-Silva MC, Wofchuk ST, Goncalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167

    Article  PubMed  Google Scholar 

  10. Quincozes-Santos A, Andreazza AC, Nardin P, Funchal C, Goncalves CA, Gottfried C (2007) Resveratrol attenuates oxidative-induced DNA damage in C6 Glioma cells. Neurotoxicology 28:886–891

    Article  PubMed  CAS  Google Scholar 

  11. Quincozes-Santos A, Nardin P, Fraga de Souza D, Gelain DP, Moreira JC, Latini A, Gonçalves CA, Gottfried C (2009) The janus face of resveratrol in astroglial cells. Neurotox Res 16:30–41

    Article  PubMed  CAS  Google Scholar 

  12. Lin C, Crawford DR, Lin S, Hwang J, Sebuyira A, Meng R, Westfall JE, Tang HY, Lin S, Yu PY, Davis PJ, Lin HY (2011) Inducible COX-2-dependent apoptosis in human ovarian cancer cells. Carcinogenesis 32:19–26

    Article  PubMed  CAS  Google Scholar 

  13. Huang TT, Lin HC, Chen CC, Lu CC, Wei CF, Wu TS, Liu FG, Lai HC (2011) Resveratrol induces apoptosis of human nasopharyngeal carcinoma cells via activation of multiple apoptotic pathways. J Cell Physiol 226:720–728

    Article  PubMed  CAS  Google Scholar 

  14. Cui J, Sun R, Yu Y, Gou S, Zhao G, Wang C (2010) Antiproliferative effect of resveratrol in pancreatic cancer cells. Phytother Res 24:1637–1644

    Article  PubMed  CAS  Google Scholar 

  15. Del Castillo-Vaquero A, Salido GM, Gonzalez A (2010) Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 49:256–263

    Article  PubMed  CAS  Google Scholar 

  16. Eum WS, Li MZ, Sin GS, Choi SY, Park JB, Lee JY, Kwon HY (2003) Desamethasone-induced differentiation of pancreatic AR42J cell involves p21 (wafl/cipl) and MAP kinase pathway. Exp Mol Med 35:379–384

    PubMed  CAS  Google Scholar 

  17. Yu JH, Lim JW, Kim KH, Morio T, Kim H (2005) NADPH oxidase and apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. Free Radic Biol Med 39:590–602

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez A, Pariente JA, Salido GM, Camello PJ (1997) Intracellular pH and calcium signalling in rat pancreatic acinar cells. Pflügers Arch Eur J Physiol 434:609–614

    Article  CAS  Google Scholar 

  19. Gonzalez A, Granados MP, Salido GM, Pariente JA (2005) H2O2-induced changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Mol Cell Biochem 269:165–173

    Article  PubMed  CAS  Google Scholar 

  20. González-Fernández L, Ortega-Ferrusola C, Macias-Garcia B, Salido GM, Peña FJ, Tapia JA (2009) Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation. Biol Reprod 80:1239–1252

    Article  PubMed  Google Scholar 

  21. Fernández-Sánchez M, del Castillo-Vaquero A, Salido GM, González A (2009) Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells. BMC Cell Biol 10:77

    Article  PubMed  Google Scholar 

  22. Gonzalez A, Camello PJ, Pariente JA, Salido GM (1997) Free cytosolic calcium levels modify intracellular pH in rat pancreatic acini. Biochem Biophys Res Commun 230:652–656

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez A, Schmid A, Sternfeld L, Krause E, Salido GM, Schulz I (1999) Cholecystokinin-evoked Ca2+ waves in isolated mouse pancreatic acinar cells are modulated by activation of cytosolic phospholipase A2, phospholipase D, and protein kinase C. Biochem Biophys Res Commun 261:726–733

    Article  PubMed  CAS  Google Scholar 

  24. Nielsen SF, Thastrup O, Pedersen R, Olsen CE, Christensen SB (1995) Structure-activity relationships of analogues of thapsigargin modified at O-11 and O-12. J Med Chem 38:272–276

    Article  PubMed  CAS  Google Scholar 

  25. Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093

    Article  PubMed  CAS  Google Scholar 

  26. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  27. Widenmaier SB, Ao Z, Kim SJ, Warnock G, McIntosh CH (2009) Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. J Biol Chem 284:30372–30382

    Article  PubMed  CAS  Google Scholar 

  28. Dabrowski A, Boguslowicz C, Dabrowska M, Tribillo I, Gabryelewicz A (2000) Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas 21:376–384

    Article  PubMed  CAS  Google Scholar 

  29. Malo A, Krüger B, Seyhun E, Schäfer C, Hoffmann RT, Göke B, Kubisch CH (2010) Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 299:G877–G886

    Article  PubMed  CAS  Google Scholar 

  30. Kovacic P, Somanathan R (2010) Multifaceted approach to resveratrol bioactivity: Focus on antioxidant action, cell signaling and safety. Oxid Med Cell Longev 3:86–100

    Article  PubMed  Google Scholar 

  31. Rivera-Barreno R, del Castillo-Vaquero A, Salido GM, González A (2010) Effect of cinnamtanninB-1 on CCK-8-evoked responses in mouse pancreatic acinar cells. Clin Exp Pharmacol Physiol 37:980–988

    Article  PubMed  CAS  Google Scholar 

  32. Salazar M, Pariente JA, Salido GM, González A (2008) Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes. Toxicology 244:280–291

    Article  PubMed  CAS  Google Scholar 

  33. Liu Z, Zhang LP, Ma HJ, Wang C, Li M, Wang QS (2005) Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes. Sheng Li Xue Bao 57:599–604

    PubMed  CAS  Google Scholar 

  34. Campos-Toimil M, Elíes J, Orallo F (2005) Trans- and cis-resveratrol increase cytoplasmic calcium levels in A7r5 vascular smooth muscle cells. Mol Nutr Food Res 49:396–404

    Article  PubMed  CAS  Google Scholar 

  35. Campos-Toimil M, Elíes J, Alvarez E, Verde I, Orallo F (2007) Effects of trans- and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes. Eur J Pharmacol 577:91–99

    Article  PubMed  CAS  Google Scholar 

  36. Das J, Ghosh J, Manna P, Sil PC (2010) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway. PLoS One 5:e12602

    Article  PubMed  Google Scholar 

  37. Jeong EA, Jeon BT, Kim JB, Kim JS, Cho YW, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS (2010) Phosphorylation of 14-3-3ζ at serine 58 and neurodegeneration following kainic acid-induced excitotoxicity. Anat Cell Biol 43:150–156

    Article  PubMed  Google Scholar 

  38. Wang J, Tang R, Lv M, Wang Q, Zhang X, Guo Y, Chang H, Qiao C, Xiao H, Li X, Li Y, Shen B, Zhang J (2011) Defective anchoring of JNK1 in the cytoplasm by MKK7 in Jurkat cells is associated with resistance to Fas-mediated apoptosis. Mol Biol Cell 22:117–127

    Article  PubMed  CAS  Google Scholar 

  39. Komiya K, Uchida T, Ueno T, Koike M, Abe H, Hirose T, Kawamori R, Uchiyama Y, Kominami E, Fujitani Y, Watada H (2010) Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway. Biochem Biophys Res Commun 401:561–567

    Article  PubMed  CAS  Google Scholar 

  40. Verma G, Datta M (2010) IL-1beta induces ER stress in a JNK dependent manner that determines cell death in human pancreatic epithelial MIA PaCa-2 cells. Apoptosis 15:864–876

    Article  PubMed  CAS  Google Scholar 

  41. Wei G, Wang M, Carr BI (2010) Sorafenib combined vitamin K induces apoptosis in human pancreatic cancer cell lines through RAF/MEK/ERK and c-Jun NH2-terminal kinase pathways. J Cell Physiol 224:112–119

    PubMed  CAS  Google Scholar 

  42. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42

    Article  PubMed  Google Scholar 

  43. Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13:329–340

    Article  PubMed  CAS  Google Scholar 

  44. Lamb JA, Ventura JJ, Hess P, Flavell RA, Davis RJ (2003) JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 11:1479–1489

    Article  PubMed  CAS  Google Scholar 

  45. Yujiri T, Sather S, Fanger GR, Johnson GL (1998) Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science 282:1911–1914

    Article  PubMed  CAS  Google Scholar 

  46. Lin A (2003) Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25:17–24

    Article  PubMed  Google Scholar 

  47. Sebai H, Ristorcelli E, Sbarra V, Hovsepian S, Fayet G, Aouani E, Lombardo D (2010) Protective effect of resveratrol against LPS-induced extracellular lipoperoxidation in AR42J cells partly via a Myd88-dependent signaling pathway. Arch Biochem Biophys 495:56–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare that there is no conflict of interest. This study was supported by Junta de Extremadura-FEDER (PRI08A018 and GR10010). Patricia Santofimia-Castaño was granted a fellowship from Junta de Extremadura (Consejería de Economía, Comercio e Innovación) and European Social Fund. Alvaro Miro-Moran was granted a fellowship from MICINN-FEDER (BES-2008-002106). The authors would like to thank Mrs. Mercedes Gomez Blazquez for her excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Sanchez, L., Santofimia-Castaño, P., Miro-Moran, A. et al. Resveratrol mobilizes Ca2+ from intracellular stores and induces c-Jun N-terminal kinase activation in tumoral AR42J cells. Mol Cell Biochem 362, 15–23 (2012). https://doi.org/10.1007/s11010-011-1123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1123-8

Keywords

Navigation