Skip to main content

Advertisement

Log in

Thrombin and vascular inflammation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AT:

Antithrombin

APC:

Activating protein C

CCL:

Chemokine (C–C motif) ligand

cPLA2 :

Cytosolic phospholipase A2

CXCL:

Chemokine (C-X-C motif) ligand

cysLT:

Cysteinyl leukotrienes

DCs:

Dendritic cells

ECs:

Endothelial cells

EDHF:

Endothelium-derived hyperpolarizing factor

ERK:

Extracellular signal regulated kinase

EGFR:

Epidermal growth factor receptor

GPIb/IIb/IIIa:

Glycoprotein Ib/IIb/IIIa

HLA:

Human leukocyte antigen

ICAM-1:

Intercellular adhesion molecule-1

IFN-γ:

Interferon-γ

IL-1α/β:

Interleukin-1α/β

IP-10:

Inducible protein-10

LT:

Leukotriene

LPS:

Lipopolysacharide

MAPK:

Mitogen activated protein kinase

M-CSF:

Macrophage colony-stimulating factor

NO:

Nitric oxide

PAI-1:

Plasminogen activator inhibitor-1

PAR:

Protease-activated receptors

PDGF:

Platelet-derived growth factor receptor

PF4:

Platelet factor 4

PGE2 :

Prostaglandin E2

PGI2 :

Prostacyclin I2

PMN:

Polymorphonuclear leukocytes

PSGL-1:

P-selectin glycoprotein ligand-1

RANTES:

Regulated on activation, normal T expressed and secreted

TF:

Tissue factor

TGF-β:

Transforming growth factor-β

TFPI:

Tissue factor pathway inhibitor

TNF-α:

Tumor necrosis factor-α

TXA2 :

Thromboxane A2

VCAM-1:

Vascular cell adhesion molecule-1

VEGF:

Vascular endothelial growth factor

VSMCs:

Vascular smooth muscle cells

vWF:

von Willebrand factor

References

  1. Bombeli T, Mueller M, Haeberli A (1997) Anticoagulant properties of the vascular endothelium. Thromb Haemost 77:408–423

    PubMed  CAS  Google Scholar 

  2. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561

    PubMed  CAS  Google Scholar 

  3. Rosenberg RD, Rosenberg JS (1984) Natural anticoagulant mechanisms. J Clin Invest 76:1–5

    Article  Google Scholar 

  4. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  5. Zimmerman GA, Whatley RE, Benson DE, Prescott SM (1990) Endothelial cells for studies of platelet-activating factor and arachidonate metabolites. Methods Enzymol 187:520–535

    Article  PubMed  CAS  Google Scholar 

  6. Roth GJ (1992) Platelets and blood vessels: the adhesion event. Immunol Today 13:100–105

    Article  PubMed  CAS  Google Scholar 

  7. Coughlin SR (1999) How the protease thrombin talks to cells. Proc Natl Acad Sci USA 96:11023–11027

    Article  PubMed  CAS  Google Scholar 

  8. Butcher EC (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033–1036

    Article  PubMed  CAS  Google Scholar 

  9. Ebnet K, Vestweber D (1999) Molecular mechanism that control leukocyte extravasation: the selectins and chemokines. Histochem Cell Biol 112:1–23

    Article  PubMed  CAS  Google Scholar 

  10. Fantone CJ, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:395–418

    PubMed  CAS  Google Scholar 

  11. Touyz RM (2003) Reactive oxygen species in vascular biology: role in arterial hypertension. Expert Rev Cardiovasc Ther 1:91–106

    Article  PubMed  CAS  Google Scholar 

  12. Lubrano V, Di Cecco P, Zucchelli GC (2006) Role of superoxide dismutase in vascular inflammation and in coronary artery disease. Clin Exp Med 6:84–88

    Article  PubMed  CAS  Google Scholar 

  13. Nawroth PP, Stern DM (1985) An endothelial cell procogaulant pathway. J Cell Biochem 28:253–264

    Article  PubMed  CAS  Google Scholar 

  14. Stern DM, Carpenter B, Nawroth PP (1986) Endothelium and the regulation of coagulation. Pathol Immunopathol Res 5:29–36

    Article  PubMed  CAS  Google Scholar 

  15. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137

    Article  PubMed  CAS  Google Scholar 

  16. Bevilacqua MP, Nelson RM, Mannori G, Cecconi O (1994) Endothelial-leukocyte adhesion molecules in human disease. Annu Rev Med 45:361–378

    Article  PubMed  CAS  Google Scholar 

  17. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    Article  PubMed  CAS  Google Scholar 

  18. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171–1176

    Article  PubMed  CAS  Google Scholar 

  19. Flower RJ (2006) Prostaglandins, bioassay and inflammation. Br J Pharmacol 147(Suppl 1):S182–S192

    PubMed  CAS  Google Scholar 

  20. Levin EG, Marzec U, Anderson J, Harker LA (1984) Thrombin stimulates tissue plasminogen activator release from cultured human endothelial cells. J Clin Invest 74:1988–1995

    Article  PubMed  CAS  Google Scholar 

  21. Levin ER (1995) Endothelins. N Engl J Med 333:356–363

    Article  PubMed  CAS  Google Scholar 

  22. Zwick E, Wallasch C, Daub H, Ullrich A (1999) Distinct calcium-dependent pathways of epidermal growth factor receptor transactivation and PYK2 tyrosine phosphorylation in PC12 cells. J Biol Chem 274:20989–20996

    Article  PubMed  CAS  Google Scholar 

  23. Isenovic ER, Trpkovic A, Zakula Z, Koricanac G, Marche P (2008) Role of ERK1/2 activation in thrombin-induced vascular smooth muscle cell hypertrophy. Curr Hypertens Rev 4:190–196

    Article  CAS  Google Scholar 

  24. Isenovic ER, Soskic S, Trpkovic A, Dobutovic B, Popovic M, Gluvic Z, Putnikovic B, Marche P (2010) Insulin, thrombine, ERK1/2 kinase and vascular smooth muscle cells proliferation. Curr Pharm Des 16:3895–3902

    Article  PubMed  CAS  Google Scholar 

  25. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3:1800–1814

    Article  PubMed  CAS  Google Scholar 

  26. Hou L, Howells GL, Kapas S, Macey MG (1998) The protease-activated receptors and their cellular expression and function in blood-related cells. Br J Haematol 101:1–9

    Article  PubMed  CAS  Google Scholar 

  27. Hamilton JR, Cocks TM (2000) Heterogeneous mechanisms of endothelium-dependent relaxation for thrombin and peptide activators of protease-activated receptor-1 in porcine isolated coronary artery. Br J Pharmacol 130:181–188

    Article  PubMed  CAS  Google Scholar 

  28. Mizuno O, Hirano K, Nishimura J, Kubo C, Kanaide H (1998) Mechanism of endothelium-dependent relaxation induced by thrombin in the pig coronary artery. Eur J Pharmacol 351:67–77

    Article  PubMed  CAS  Google Scholar 

  29. Ku DD, Zaleski JK (1993) Receptor mechanism of thrombin-induced endothelium-dependent and endothelium-independent coronary vascular effects in dogs. J Cardiovasc Pharmacol 22:609–616

    Article  PubMed  CAS  Google Scholar 

  30. Gudmundsdottir IJ, Lang NN, Boon NA, Ludlam CA, Webb DJ, Fox KA, Newby DE (2008) Role of the endothelium in the vascular effects of the thrombin receptor (protease-activated receptor type 1) in humans. J Am Coll Cardiol 51:1749–1756

    Article  PubMed  CAS  Google Scholar 

  31. Rabausch K, Bretschneider E, Sarbia M, Meyer-Kirchrath J, Censarek P, Pape R, Fischer JW, Schror K, Weber AA (2005) Regulation of thrombomodulin expression in human vascular smooth muscle cells by COX-2-derived prostaglandins. Circ Res 96:e1–e6

    Article  PubMed  CAS  Google Scholar 

  32. Rosenkranz AC, Rauch BH, Freidel K, Schror K (2009) Regulation of protease-activated receptor-1 by vasodilatory prostaglandins via NFAT. Cardiovasc Res 83:778–784

    Article  PubMed  CAS  Google Scholar 

  33. Pape R, Rauch BH, Rosenkranz AC, Kaber G, Schror K (2008) Transcriptional inhibition of protease-activated receptor-1 expression by prostacyclin in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28:534–540

    Article  PubMed  CAS  Google Scholar 

  34. Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H (2008) Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med 205:2053–2063

    Article  PubMed  CAS  Google Scholar 

  35. Hirano K (2007) The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 27:27–36

    Article  PubMed  CAS  Google Scholar 

  36. Motley ED, Eguchi K, Patterson MM, Palmer PD, Suzuki H, Eguchi S (2007) Mechanism of endothelial nitric oxide synthase phosphorylation and activation by thrombin. Hypertension 49:577–583

    Article  PubMed  CAS  Google Scholar 

  37. Church FC, Pratt CW, Noyes CN, Kalayanamit T, Sherrill JB, Tobin RB, Meade JB (1989) Structural and functional properties of human alpha-thrombin, phosphopyridoxylated alpha-thrombin, and gamma T-thrombin. Identification of lysyl residues in alpha-thrombin that are critical for heparin and fibrin(ogen) interactions. J Biol Chem 264:18419–18425

    PubMed  CAS  Google Scholar 

  38. Coughlin SR (2000) Thrombin signaling and protease-activated receptors. Nature 407:258–264

    Article  PubMed  CAS  Google Scholar 

  39. Esmon CT (1999) Inflammation, sepsis, and coagulation. Haematologica 84:254–259

    PubMed  CAS  Google Scholar 

  40. Davey MG, Luscher EF (1967) Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature 216:857–858

    Article  PubMed  CAS  Google Scholar 

  41. Li X, Syrovets T, Paskas S, Laumonnier Y, Simmet T (2008) Mature dendritic cells express functional thrombin receptors triggering chemotaxis and CCL18/pulmonary and activation-regulated chemokine induction. J Immunol 181:1215–1223

    PubMed  CAS  Google Scholar 

  42. Abdallah RT, Keum JS, Lee MH, Wang B, Gooz M, Luttrell DK, Luttrell LM, Jaffa AA (2010) Plasma kallikrein promotes epidermal growth factor receptor transactivation and signaling in vascular smooth muscle through direct activation of protease-activated receptors. J Biol Chem 285:35206–35215

    Article  PubMed  CAS  Google Scholar 

  43. Schmaier AH (2008) Assembly, activation, and physiologic influence of the plasma kallikrein/kinin system. Int Immunopharmacol 8:161–165

    Article  PubMed  CAS  Google Scholar 

  44. Ahn HS, Chackalamannil S, Boykow G, Graziano MP, Foster C (2003) Development of proteinase-activated receptor 1 antagonists as therapeutic agents for thrombosis, restenosis and inflammatory diseases. Curr Pharm Des 9:2349–2365

    Article  PubMed  CAS  Google Scholar 

  45. McLaughlin JN, Patterson MM, Malik AB (2007) Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc Natl Acad Sci USA 104:5662–5667

    Article  PubMed  CAS  Google Scholar 

  46. Ostrowska E, Reiser G (2008) The protease-activated receptor-3 (PAR-3) can signal autonomously to induce interleukin-8 release. Cell Mol Life Sci 65:970–981

    Article  PubMed  CAS  Google Scholar 

  47. Vidwan P, Pathak A, Sheth S, Huang J, Monroe DM, Stouffer GA (2010) Activation of protease-activated receptors 3 and 4 accelerates tissue factor-induced thrombin generation on the surface of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 30:2587–2596

    Article  PubMed  CAS  Google Scholar 

  48. Strande JL, Hsu A, Su J, Fu X, Gross GJ, Baker JE (2008) Inhibiting protease-activated receptor 4 limits myocardial ischemia/reperfusion injury in rat hearts by unmasking adenosine signaling. J Pharmacol Exp Ther 324:1045–1054

    Article  PubMed  CAS  Google Scholar 

  49. Ritchie E, Saka M, Mackenzie C, Drummond R, Wheeler-Jones C, Kanke T, Plevin R (2007) Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br J Pharmacol 150:1044–1054

    Article  PubMed  CAS  Google Scholar 

  50. Dangwal S, Rauch BH, Gensch T, Dai L, Bretschneider E, Vogelaar CF, Schror K, Rosenkranz AC (2011) High glucose enhances thrombin responses via protease-activated receptor-4 in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31:624–633

    Article  PubMed  CAS  Google Scholar 

  51. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV Jr, Tam C, Coughlin SR (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    Article  PubMed  CAS  Google Scholar 

  52. Shah R (2009) Protease-activated receptors in cardiovascular health and diseases. Am Heart J 157:253–262

    Article  PubMed  CAS  Google Scholar 

  53. Covic L, Gresser AL, Kuliopulos A (2000) Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39:5458–5467

    Article  PubMed  CAS  Google Scholar 

  54. Wu CC, Wu SY, Liao CY, Teng CM, Wu YC, Kuo SC (2010) The roles and mechanisms of PAR4 and P2Y12/phosphatidylinositol 3-kinase pathway in maintaining thrombin-induced platelet aggregation. Br J Pharmacol 161:643–658

    Article  PubMed  CAS  Google Scholar 

  55. Italiano JE Jr, Shivdasani RA (2003) Megakaryocytes and beyond: the birth of platelets. J Thromb Haemost 1:1174–1182

    Article  PubMed  CAS  Google Scholar 

  56. Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494

    Article  PubMed  CAS  Google Scholar 

  57. Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111:1227–1233

    Article  PubMed  CAS  Google Scholar 

  58. Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF (1991) Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 11:254–260

    Article  PubMed  CAS  Google Scholar 

  59. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68

    Article  PubMed  Google Scholar 

  60. Moncada S, Vane JR (1978) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30:293–331

    PubMed  CAS  Google Scholar 

  61. Frenette PS, Johnson RC, Hynes RO, Wagner DD (1995) Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci USA 92:7450–7454

    Article  PubMed  CAS  Google Scholar 

  62. Frenette PS, Moyna C, Hartwell DW, Lowe JB, Hynes RO, Wagner DD (1998) Platelet-endothelial interactions in inflamed mesenteric venules. Blood 91:1318–1324

    PubMed  CAS  Google Scholar 

  63. Rendu F, Brohard-Bohn B (2001) The platelet release reaction: granules’ constituents, secretion and functions. Platelets 12:261–273

    Article  PubMed  CAS  Google Scholar 

  64. Garcia JG, Pavalko FM, Patterson CE (1995) Vascular endothelial cell activation and permeability responses to thrombin. Blood Coagul Fibrinolysis 6:609–626

    Article  PubMed  CAS  Google Scholar 

  65. Bavendiek U, Libby P, Kilbride M, Reynolds R, Mackman N, Schonbeck U (2002) Induction of tissue factor expression in human endothelial cells by CD40 ligand is mediated via activator protein 1, nuclear factor kappa B, and Egr-1. J Biol Chem 277:25032–25039

    Article  PubMed  CAS  Google Scholar 

  66. Wilcox JN, Smith KM, Schwartz SM, Gordon D (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86:2839–2843

    Article  PubMed  CAS  Google Scholar 

  67. Mackman N (2004) Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 24:1015–1022

    Article  PubMed  CAS  Google Scholar 

  68. Mann KG, van’t Veer C, Cawthern K, Butenas S (1998) The role of the tissue factor pathway in initiation of coagulation. Blood Coagul Fibrinolysis 9(Suppl 1):S3–S7

    PubMed  CAS  Google Scholar 

  69. Nemerson Y (1988) Tissue factor and hemostasis. Blood 71:1–8

    PubMed  CAS  Google Scholar 

  70. Mann KG, Lawson JH (1992) The role of the membrane in the expression of the vitamin K-dependent enzymes. Arch Pathol Lab Med 116:1330–1336

    PubMed  CAS  Google Scholar 

  71. Tracy PB, Nesheim ME, Mann KG (1992) Platelet factor Xa receptor. Methods Enzymol 215:329–360

    Article  PubMed  CAS  Google Scholar 

  72. Esmon CT (1979) The subunit structure of thrombin-activated factor V. Isolation of activated factor V, separation of subunits, and reconstitution of biological activity. J Biol Chem 254:964–973

    PubMed  CAS  Google Scholar 

  73. Nesheim ME, Mann KG (1979) Thrombin-catalyzed activation of single chain bovine factor V. J Biol Chem 254:1326–1334

    PubMed  CAS  Google Scholar 

  74. Fay PJ (1988) Subunit structure of thrombin-activated human factor VIIIa. Biochim Biophys Acta 952:181–190

    Article  PubMed  CAS  Google Scholar 

  75. Fay PJ, Anderson MT, Chavin SI, Marder VJ (1986) The size of human factor VIII heterodimers and the effects produced by thrombin. Biochim Biophys Acta 871:268–278

    Article  PubMed  CAS  Google Scholar 

  76. Di Scipio RG, Kurachi K, Davie EW (1978) Activation of human factor IX (Christmas factor). J Clin Invest 61:1528–1538

    Article  PubMed  CAS  Google Scholar 

  77. Osterud B, Bouma BN, Griffin JH (1978) Human blood coagulation factor IX. Purification, properties, and mechanism of activation by activated factor XI. J Biol Chem 253:5946–5951

    PubMed  CAS  Google Scholar 

  78. Broze GJ Jr, Girard TJ, Novotny WF (1991) The lipoprotein-associated coagulation inhibitor. Prog Hemost Thromb 10:243–268

    PubMed  CAS  Google Scholar 

  79. Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP (1988) The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood 71:335–343

    PubMed  CAS  Google Scholar 

  80. Rauch U, Nemerson Y (2000) Tissue factor, the blood, and the arterial wall. Trends Cardiovasc Med 10:139–143

    Article  PubMed  CAS  Google Scholar 

  81. Engelmann B, Luther T, Muller I (2003) Intravascular tissue factor pathway: a model for rapid initiation of coagulation within the blood vessel. Thromb Haemost 89:3–8

    PubMed  CAS  Google Scholar 

  82. Soejima H, Ogawa H, Yasue H, Kaikita K, Nishiyama K, Misumi K, Takazoe K, Miyao Y, Yoshimura M, Kugiyama K, Nakamura S, Tsuji I, Kumeda K (1999) Heightened tissue factor associated with tissue factor pathway inhibitor and prognosis in patients with unstable angina. Circulation 99:2908–2913

    PubMed  CAS  Google Scholar 

  83. Misumi K, Ogawa H, Yasue H, Soejima H, Suefuji H, Nishiyama K, Takazoe K, Kugiyama K, Tsuji I, Kumeda K, Nakamura S (1998) Comparison of plasma tissue factor levels in unstable and stable angina pectoris. Am J Cardiol 81:22–26

    Article  PubMed  CAS  Google Scholar 

  84. Suefuji H, Ogawa H, Yasue H, Kaikita K, Soejima H, Motoyama T, Mizuno Y, Oshima S, Saito T, Tsuji I, Kumeda K, Kamikubo Y, Nakamura S (1997) Increased plasma tissue factor levels in acute myocardial infarction. Am Heart J 134:253–259

    Article  PubMed  CAS  Google Scholar 

  85. Giesen PL, Rauch U, Bohrmann B, Kling D, Roque M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y (1999) Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 96:2311–2315

    Article  PubMed  CAS  Google Scholar 

  86. Palabrica T, Lobb R, Furie BC, Aronovitz M, Benjamin C, Hsu YM, Sajer SA, Furie B (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359:848–851

    Article  PubMed  CAS  Google Scholar 

  87. Zillmann A, Luther T, Muller I, Kotzsch M, Spannagl M, Kauke T, Oelschlagel U, Zahler S, Engelmann B (2001) Platelet-associated tissue factor contributes to the collagen-triggered activation of blood coagulation. Biochem Biophys Res Commun 281:603–609

    Article  PubMed  CAS  Google Scholar 

  88. Day SM, Reeve JL, Pedersen B, Farris DM, Myers DD, Im M, Wakefield TW, Mackman N, Fay WP (2005) Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 105:192–198

    Article  PubMed  CAS  Google Scholar 

  89. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b–9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212

    PubMed  CAS  Google Scholar 

  90. Esmon CT (2005) The interactions between inflammation and coagulation. Br J Haematol 131:417–430

    Article  PubMed  CAS  Google Scholar 

  91. Arita H, Nakano T, Hanasaki K (1989) Thromboxane A2: its generation and role in platelet activation. Prog Lipid Res 28:273–301

    Article  PubMed  CAS  Google Scholar 

  92. Catella-Lawson F, FitzGerald GA (1995) Long-term aspirin in the prevention of cardiovascular disorders. Recent developments and variations on a theme. Drug Saf 13:69–75

    Article  PubMed  CAS  Google Scholar 

  93. Atkinson BT, Stafford MJ, Pears CJ, Watson SP (2001) Signalling events underlying platelet aggregation induced by the glycoprotein VI agonist convulxin. Eur J Biochem 268:5242–5248

    Article  PubMed  CAS  Google Scholar 

  94. Henriksen RA, Samokhin GP, Tracy PB (1997) Thrombin-induced thromboxane synthesis by human platelets. Properties of anion binding exosite I-independent receptor. Arterioscler Thromb Vasc Biol 17:3519–3526

    Article  PubMed  CAS  Google Scholar 

  95. Wu CC, Hwang TL, Liao CH, Kuo SC, Lee FY, Teng CM (2003) The role of PAR4 in thrombin-induced thromboxane production in human platelets. Thromb Haemost 90:299–308

    PubMed  CAS  Google Scholar 

  96. Borsch-Haubold AG, Bartoli F, Asselin J, Dudler T, Kramer RM, Apitz-Castro R, Watson SP, Gelb MH (1998) Identification of the phosphorylation sites of cytosolic phospholipase A2 in agonist-stimulated human platelets and HeLa cells. J Biol Chem 273:4449–4458

    Article  PubMed  CAS  Google Scholar 

  97. Li Z, Xi X, Du X (2001) A mitogen-activated protein kinase-dependent signaling pathway in the activation of platelet integrin alpha IIbbeta3. J Biol Chem 276:42226–42232

    Article  PubMed  CAS  Google Scholar 

  98. Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF (2002) P2X(1)-mediated activation of extracellular signal-regulated kinase 2 contributes to platelet secretion and aggregation induced by collagen. Blood 100:2499–2505

    Article  PubMed  CAS  Google Scholar 

  99. Roger S, Pawlowski M, Habib A, Jandrot-Perrus M, Rosa JP, Bryckaert M (2004) Costimulation of the Gi-coupled ADP receptor and the Gq-coupled TXA2 receptor is required for ERK2 activation in collagen-induced platelet aggregation. FEBS Lett 556:227–235

    Article  PubMed  CAS  Google Scholar 

  100. Sakurai K, Matsuo Y, Sudo T, Takuwa Y, Kimura S, Kasuya Y (2004) Role of p38 mitogen-activated protein kinase in thrombus formation. J Recept Signal Transduct Res 24:283–296

    Article  PubMed  CAS  Google Scholar 

  101. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72:269–278

    Article  PubMed  CAS  Google Scholar 

  102. Borsch-Haubold AG, Kramer RM, Watson SP (1996) Inhibition of mitogen-activated protein kinase kinase does not impair primary activation of human platelets. Biochem J 318(Pt 1):207–212

    PubMed  CAS  Google Scholar 

  103. Kuliopulos A, Mohanlal R, Covic L (2004) Effect of selective inhibition of the p38 MAP kinase pathway on platelet aggregation. Thromb Haemost 92:1387–1393

    PubMed  CAS  Google Scholar 

  104. McNicol A, Jackson EC (2003) Inhibition of the MEK/ERK pathway has no effect on agonist-induced aggregation of human platelets. Biochem Pharmacol 65:1243–1250

    Article  PubMed  CAS  Google Scholar 

  105. Garcia A, Quinton TM, Dorsam RT, Kunapuli SP (2005) Src family kinase-mediated and Erk-mediated thromboxane A2 generation are essential for VWF/GPIb-induced fibrinogen receptor activation in human platelets. Blood 106:3410–3414

    Article  PubMed  CAS  Google Scholar 

  106. Shankar H, Garcia A, Prabhakar J, Kim S, Kunapuli SP (2006) P2Y12 receptor-mediated potentiation of thrombin-induced thromboxane A2 generation in platelets occurs through regulation of Erk1/2 activation. J Thromb Haemost 4:638–647

    Article  PubMed  CAS  Google Scholar 

  107. Lundblad RL, White GC 2nd (2005) The interaction of thrombin with blood platelets. Platelets 16:373–385

    Article  PubMed  CAS  Google Scholar 

  108. Canobbio I, Balduini C, Torti M (2004) Signalling through the platelet glycoprotein Ib-V-IX complex. Cell Signal 16:1329–1344

    Article  PubMed  CAS  Google Scholar 

  109. De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R (2001) Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 276:4692–4698

    Article  PubMed  Google Scholar 

  110. Dubois C, Steiner B, Kieffer N, Reigner SC (2003) Thrombin binding to GPIbalpha induces platelet aggregation and fibrin clot retraction supported by resting alphaIIbbeta3 interaction with polymerized fibrin. Thromb Haemost 89:853–865

    PubMed  CAS  Google Scholar 

  111. Soslau G, Class R, Morgan DA, Foster C, Lord ST, Marchese P, Ruggeri ZM (2001) Unique pathway of thrombin-induced platelet aggregation mediated by glycoprotein Ib. J Biol Chem 276:21173–21183

    Article  PubMed  CAS  Google Scholar 

  112. Lova P, Canobbio I, Guidetti GF, Balduini C, Torti M (2010) Thrombin induces platelet activation in the absence of functional protease activated receptors 1 and 4 and glycoprotein Ib-IX-V. Cell Signal 22:1681–1687

    Article  PubMed  CAS  Google Scholar 

  113. Ritchie RH, Rosenkranz AC, Kaye DM (2009) B-type natriuretic peptide: endogenous regulator of myocardial structure, biomarker and therapeutic target. Curr Mol Med 9:814–825

    Article  PubMed  CAS  Google Scholar 

  114. Blomback B, Banerjee D, Carlsson K, Hamsten A, Hessel B, Procyk R, Silveira A, Zacharski L (1990) Native fibrin gel networks and factors influencing their formation in health and disease. Adv Exp Med Biol 281:1–23

    Article  PubMed  CAS  Google Scholar 

  115. Brass LF, Zhu L, Stalker TJ (2005) Minding the gaps to promote thrombus growth and stability. J Clin Invest 115:3385–3392

    Article  PubMed  CAS  Google Scholar 

  116. Munnix IC, Cosemans JM, Auger JM, Heemskerk JW (2009) Platelet response heterogeneity in thrombus formation. Thromb Haemost 102:1149–1156

    PubMed  CAS  Google Scholar 

  117. De Meyer SF, Vandeputte N, Pareyn I, Petrus I, Lenting PJ, Chuah MK, VandenDriessche T, Deckmyn H, Vanhoorelbeke K (2008) Restoration of plasma von willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy for severe von willebrand disease. Arterioscler Thromb Vasc Biol 28:1621–1626

    Article  PubMed  CAS  Google Scholar 

  118. Massberg S, Enders G, Leiderer R, Eisenmenger S, Vestweber D, Krombach F, Messmer K (1998) Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood 92:507–515

    PubMed  CAS  Google Scholar 

  119. Burger PC, Wagner DD (2003) Platelet P-selectin facilitates atherosclerotic lesion development. Blood 101:2661–2666

    Article  PubMed  CAS  Google Scholar 

  120. Wang K, Zhou X, Zhou Z, Mal N, Fan L, Zhang M, Lincoff AM, Plow EF, Topol EJ, Penn MS (2005) Platelet, not endothelial, P-selectin is required for neointimal formation after vascular injury. Arterioscler Thromb Vasc Biol 25:1584–1589

    Article  PubMed  CAS  Google Scholar 

  121. Braun OO, Slotta JE, Menger MD, Erlinge D, Thorlacius H (2008) Primary and secondary capture of platelets onto inflamed femoral artery endothelium is dependent on P-selectin and PSGL-1. Eur J Pharmacol 592:128–132

    Article  PubMed  CAS  Google Scholar 

  122. Sachais BS, Turrentine T, Dawicki McKenna JM, Rux AH, Rader D, Kowalska MA (2007) Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE −/− mice. Thromb Haemost 98:1108–1113

    PubMed  CAS  Google Scholar 

  123. Gleissner CA, von Hundelshausen P, Ley K (2008) Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 28:1920–1927

    Article  PubMed  CAS  Google Scholar 

  124. Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, Sarabi A, Kramp BK, Piccinini AM, Paludan SR, Kowalska MA, Kungl AJ, Hackeng TM, Mayo KH, Weber C (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15:97–103

    Article  PubMed  CAS  Google Scholar 

  125. Lijnen HR (2001) Elements of the fibrinolytic system. Ann NY Acad Sci 936:226–236

    Article  PubMed  CAS  Google Scholar 

  126. Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647–654

    PubMed  CAS  Google Scholar 

  127. Zorio E, Gilabert-Estellés J, España F, Ramón LA, Cosín R, Estellés A (2008) Fibrinolysis: the key to new pathogenetic mechanisms. Curr Med Chem 15:923–929

    Article  PubMed  CAS  Google Scholar 

  128. Krone KA, Allen KL, McCrae KR (2010) Impaired fibrinolysis in the antiphospholipid syndrome. Curr Rheumatol Rep 12:53–57

    Article  PubMed  CAS  Google Scholar 

  129. Thors B, Halldorsson H, Thorgeirsson G (2004) Thrombin and histamine stimulate endothelial nitric-oxide synthase phosphorylation at Ser1177 via an AMPK mediated pathway independent of PI3 K-Akt. FEBS Letts 573:175–180

    Article  CAS  Google Scholar 

  130. Anderson CN, Ohta K, Quick MM, Fleming A, Keynes R, Tannahill D (2003) Molecular analysis of axon repulsion by the notochord. Development 130:1123–1133

    Article  PubMed  CAS  Google Scholar 

  131. Wroblewski BM, Siney PD, Fleming PA (2003) Wear of enhanced ultra-high molecular-weight polyethylene (Hylamer) in combination with a 22.225 mm diameter zirconia femoral head. J Bone Joint Surg Br 85:376–379

    Article  PubMed  CAS  Google Scholar 

  132. Ferrara N (2009) VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 20:158–163

    PubMed  CAS  Google Scholar 

  133. Nagy JA, Dvorak AM, Dvorak HF (2007) VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2:251–275

    Article  PubMed  CAS  Google Scholar 

  134. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    Article  PubMed  CAS  Google Scholar 

  135. Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, Simons M (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118:3355–3366

    Article  PubMed  CAS  Google Scholar 

  136. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567

    Article  PubMed  CAS  Google Scholar 

  137. Stouffer GA, Schmedtje JF, Gulba D, Huber K, Bode C, Aaron J, Runge MS (1996) Restenosis following percutaneous revascularization–the potential role of thrombin and the thrombin receptor. Ann Hematol 73(Suppl 1):S39–S41

    PubMed  CAS  Google Scholar 

  138. Ragosta M, Barry WL, Gimple LW, Gertz SD, McCoy KW, Stouffer GA, McNamara CA, Powers ER, Owens GK, Sarembock IJ (1996) Effect of thrombin inhibition with desulfatohirudin on early kinetics of cellular proliferation after balloon angioplasty in atherosclerotic rabbits. Circulation 93:1194–1200

    PubMed  CAS  Google Scholar 

  139. Molskness TA, Woodruff TK, Hess DL, Dahl KD, Stouffer RL (1996) Recombinant human inhibin-A administered early in the menstrual cycle alters concurrent pituitary and follicular, plus subsequent luteal, function in rhesus monkeys. J Clin Endocrinol Metab 81:4002–4006

    Article  PubMed  CAS  Google Scholar 

  140. McNamara CA, Sarembock IJ, Bachhuber BG, Stouffer GA, Ragosta M, Barry W, Gimple LW, Powers ER, Owens GK (1996) Thrombin and vascular smooth muscle cell proliferation: implications for atherosclerosis and restenosis. Semin Thromb Hemost 22:139–144

    Article  PubMed  CAS  Google Scholar 

  141. Wolf DP, Alexander M, Zelinski-Wooten M, Stouffer RL (1996) Maturity and fertility of rhesus monkey oocytes collected at different intervals after an ovulatory stimulus (human chorionic gonadotropin) in in vitro fertilization cycles. Mol Reprod Dev 43:76–81

    Article  PubMed  CAS  Google Scholar 

  142. Christenson LK, Stouffer RL (1996) Proliferation of microvascular endothelial cells in the primate corpus luteum during the menstrual cycle and simulated early pregnancy. Endocrinology 137:367–374

    Article  PubMed  CAS  Google Scholar 

  143. Chung SW, Park JW, Lee SA, Eo SK, Kim K (2010) Thrombin promotes proinflammatory phenotype in human vascular smooth muscle cell. Biochem Biophys Res Commun 396:748–754

    Article  PubMed  CAS  Google Scholar 

  144. Vendrov AE, Madamanchi NR, Niu XL, Molnar KC, Runge M, Szyndralewiez C, Page P, Runge MS (2010) NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J Biol Chem 285:26545–26557

    Article  PubMed  CAS  Google Scholar 

  145. Vidwan P, Lee S, Rossi JS, Stouffer GA (2010) Relation of platelet count to bleeding and vascular complications in patients undergoing coronary angiography. Am J Cardiol 105:1219–1222

    Article  PubMed  Google Scholar 

  146. Hsieh HL, Tung WH, Wu CY, Wang HH, Lin CC, Wang TS, Yang CM (2009) Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 29:1594–1601

    Article  PubMed  CAS  Google Scholar 

  147. Martin K, Weiss S, Metharom P, Schmeckpeper J, Hynes B, O’Sullivan J, Caplice N (2009) Thrombin stimulates smooth muscle cell differentiation from peripheral blood mononuclear cells via protease-activated receptor-1, RhoA, and myocardin. Circ Res 105:214–218

    Article  PubMed  CAS  Google Scholar 

  148. Gad M, Claesson MH, Pedersen AE (2003) Dendritic cells in peripheral tolerance and immunity. APMIS 111:766–775

    Article  PubMed  CAS  Google Scholar 

  149. Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    Article  PubMed  CAS  Google Scholar 

  150. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  151. Yanagita M, Kobayashi R, Kashiwagi Y, Shimabukuro Y, Murakami S (2007) Thrombin regulates the function of human blood dendritic cells. Biochem Biophys Res Commun 364:318–324

    Article  PubMed  CAS  Google Scholar 

  152. Kissel K, Berber S, Nockher A, Santoso S, Bein G, Hackstein H (2006) Human platelets target dendritic cell differentiation and production of proinflammatory cytokines. Transfusion 46:818–827

    Article  PubMed  CAS  Google Scholar 

  153. Osugi Y, Vuckovic S, Hart DN (2002) Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 100:2858–2866

    Article  PubMed  CAS  Google Scholar 

  154. Liu Y, Shaw SK, Ma S, Yang L, Luscinskas FW, Parkos CA (2004) Regulation of leukocyte transmigration: cell surface interactions and signaling events. J Immunol 172:7–13

    PubMed  CAS  Google Scholar 

  155. Mine S, Fujisaki T, Suematsu M, Tanaka Y (2001) Activated platelets and endothelial cell interaction with neutrophils under flow conditions. Intern Med 40:1085–1092

    Article  PubMed  CAS  Google Scholar 

  156. Cadroy Y, Dupouy D, Boneu B, Plaisancie H (2000) Polymorphonuclear leukocytes modulate tissue factor production by mononuclear cells: role of reactive oxygen species. J Immunol 164:3822–3828

    PubMed  CAS  Google Scholar 

  157. Todoroki H, Higure A, Okamoto K, Okazaki K, Nagafuchi Y, Takeda S, Katoh H, Itoh H, Ohsato K, Nakamura S (1998) Possible role of platelet-activating factor in the in vivo expression of tissue factor in neutrophils. J Surg Res 80:149–155

    Article  PubMed  CAS  Google Scholar 

  158. Higure A, Okamoto K, Hirata K, Todoroki H, Nagafuchi Y, Takeda S, Katoh H, Itoh H, Ohsato K, Nakamura S (1996) Macrophages and neutrophils infiltrating into the liver are responsible for tissue factor expression in a rabbit model of acute obstructive cholangitis. Thromb Haemost 75:791–795

    PubMed  CAS  Google Scholar 

  159. McGee MP, Li LC (1991) Functional difference between intrinsic and extrinsic coagulation pathways. Kinetics of factor X activation on human monocytes and alveolar macrophages. J Biol Chem 266:8079–8085

    PubMed  CAS  Google Scholar 

  160. Tracy PB, Eide LL, Mann KG (1985) Human prothrombinase complex assembly and function on isolated peripheral blood cell populations. J Biol Chem 260:2119–2124

    PubMed  CAS  Google Scholar 

  161. Tracy PB, Rohrbach MS, Mann KG (1983) Functional prothrombinase complex assembly on isolated monocytes and lymphocytes. J Biol Chem 258:7264–7267

    PubMed  CAS  Google Scholar 

  162. Morrissey JH (2001) Tissue factor: an enzyme cofactor and a true receptor. Thromb Haemost 86:66–74

    PubMed  CAS  Google Scholar 

  163. Celi A, Pellegrini G, Lorenzet R, De Blasi A, Ready N, Furie BC, Furie B (1994) P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA 91:8767–8771

    Article  PubMed  CAS  Google Scholar 

  164. McGee MP, Foster S, Wang X (1994) Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation. J Exp Med 179:1847–1854

    Article  PubMed  CAS  Google Scholar 

  165. Levi M, van der Poll T, Buller HR (2004) Bidirectional relation between inflammation and coagulation. Circulation 109:2698–2704

    Article  PubMed  Google Scholar 

  166. Bar-Shavit R, Kahn A, Wilner GD, Fenton JW 2nd (1983) Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science 220:728–731

    Article  PubMed  CAS  Google Scholar 

  167. Colognato R, Slupsky JR, Jendrach M, Burysek L, Syrovets T, Simmet T (2003) Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood 102:2645–2652

    Article  PubMed  CAS  Google Scholar 

  168. Chang CJ, Hsu LA, Ko YH, Chen PL, Chuang YT, Lin CY, Liao CH, Pang JH (2009) Thrombin regulates matrix metalloproteinase-9 expression in human monocytes. Biochem Biophys Res Commun 385:241–246

    Article  PubMed  CAS  Google Scholar 

  169. Kalmes A, Vesti BR, Daum G, Abraham JA, Clowes AW (2000) Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ Res 87:92–98

    PubMed  CAS  Google Scholar 

  170. Madamanchi NR, Li S, Patterson C, Runge MS (2001) Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem 276:18915–18924

    Article  PubMed  CAS  Google Scholar 

  171. Rauch BH, Rosenkranz AC, Ermler S, Bohm A, Driessen J, Fischer JW, Sugidachi A, Jakubowski JA, Schror K (2010) Regulation of functionally active P2Y12 ADP receptors by thrombin in human smooth muscle cells and the presence of P2Y12 in carotid artery lesions. Arterioscler Thromb Vasc Biol 30:2434–2442

    Article  PubMed  CAS  Google Scholar 

  172. Ellis CA, Tiruppathi C, Sandoval R, Niles WD, Malik AB (1999) Time course of recovery of endothelial cell surface thrombin receptor (PAR-1) expression. Am J Physiol Cell Physiol 276:C38–C45

    CAS  Google Scholar 

  173. Hattori R, Hamilton KK, Fugate RD, McEver RP, Sims PJ (1989) Stimulated secretion of endothelial vWF is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem 264:7768–7771

    PubMed  CAS  Google Scholar 

  174. Moy AB, Engelenhoven JV, Bodmer J, Kamath J, Keese C, Giaever I, Shasby S, Shasby DM (1996) Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J Clin Invest 97:1020–1027

    Article  PubMed  CAS  Google Scholar 

  175. Popovic M, Laumonnier Y, Burysek L, Syrovets T, Simmet T (2008) Thrombin-induced expression of endothelial CX3CL1 potentiates monocyte CCL2 production and transendothelial migration. J Leukoc Biol 84:215–223

    Article  PubMed  CAS  Google Scholar 

  176. DiMuzio PJ, Pratt KJ, Park PK, Carabasi RA (1994) Role of thrombin in endothelial cell monolayer repair in vitro. J Vasc Surg 20:621–628

    Article  PubMed  CAS  Google Scholar 

  177. Houliston RA, Keogh RJ, Sugden D, Dudhia J, Carter TD, Wheeler-Jones CP (2002) Protease-activated receptors upregulate cyclooxygenase-2 expression in human endothelial cells. Thromb Haemost 88:321–328

    PubMed  CAS  Google Scholar 

  178. Shinohara T, Suzuki K, Takada K, Okada M, Ohsuzu F (2002) Regulation of proteinase-activated receptor 1 by inflammatory mediators in human vascular endothelial cells. Cytokine 19:66–75

    Article  PubMed  CAS  Google Scholar 

  179. Suidan HS, Bouvier J, Schaerer E, Stone SR, Monard D, Tschopp J (1994) Granzyme a released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc Natl Acad Sci 91:8112–8116

    Article  PubMed  CAS  Google Scholar 

  180. Kaur J, Woodman RC, Ostrovsky L, Kubes P (2001) Selective recruitment of neutrophils and lymphocytes by thrombin: a role for NF-kappaB. Am J Physiol: Heart and Circ Physiol 281:H784–H795

    CAS  Google Scholar 

  181. Bizios R, Lai L, Fenton JW 2nd, Malik AB (1986) Thrombin-induced chemotaxis and aggregation of neutrophils. J Cell Physiol 128:485–490

    Article  PubMed  CAS  Google Scholar 

  182. Cao H, Dronadula N, Rao GN (2006) Thrombin induces expression of FGF-2 via activation of PI3 K-Akt-Fra-1 signaling axis leading to DNA synthesis and motility in vascular smooth muscle cells. Am J Physiol Cell Physiol 290:C172–C182

    Article  PubMed  CAS  Google Scholar 

  183. Furuhashi I, Abe K, Sato T, Inoue H (2008) Thrombin-stimulated proliferation of cultured human synovial fibroblasts through proteolytic activation of proteinase-activated receptor-1. J Pharmacol Sci 108:104–111

    Article  PubMed  CAS  Google Scholar 

  184. Gruber R, Jindra C, Kandler B, Watzak G, Fischer MB, Watzek G (2004) Proliferation of dental pulp fibroblasts in response to thrombin involves mitogen-activated protein kinase signalling. Int Endod J 37:145–150

    Article  PubMed  CAS  Google Scholar 

  185. Marin V, Farnarier C, Gres S, Kaplanski S, Su MS, Dinarello CA, Kaplanski G (2001) The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood 98:667–673

    Article  PubMed  CAS  Google Scholar 

  186. Hallam TJ, Pearson JD, Needham LA (1988) Thrombin-stimulated elevation of human endothelial-cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J 251:243–249

    PubMed  CAS  Google Scholar 

  187. Prescott SM, Zimmerman GA, McIntyre TM (1984) Human endothelial cells in culture produce platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin. Proc Natl Acad Sci USA 81:3534–3538

    Article  PubMed  CAS  Google Scholar 

  188. Kell PJ, Creer MH, Crown KN, Wirsig K, McHowat J (2003) Inhibition of platelet-activating factor (PAF) acetylhydrolase by methyl arachidonyl fluorophosphonate potentiates PAF synthesis in thrombin-stimulated human coronary artery endothelial cells. J Pharmacol Exp Ther 307:1163–1170

    Article  PubMed  CAS  Google Scholar 

  189. Schini VB, Hendrickson H, Heublein DM, Burnett JC Jr, Vanhoutte PM (1989) Thrombin enhances the release of endothelin from cultured porcine aortic endothelial cells. Eur J Pharmacol 165:333–334

    Article  PubMed  CAS  Google Scholar 

  190. Morimoto S, Takahashi T, Shimizu K, Kanda T, Okaishi K, Okuro M, Murai H, Nishimura Y, Nomura K, Tsuchiya H, Ohashi I, Matsumoto M (2005) Electromagnetic fields inhibit endothelin-1 production stimulated by thrombin in endothelial cells. J Int Med Res 33:545–554

    PubMed  CAS  Google Scholar 

  191. Sporn LA, Marder VJ, Wagner DD (1986) Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 84:185–190

    Article  Google Scholar 

  192. Sporn LA, Marder VJ, Wagner DD (1989) Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells. J Cell Biol 108:1283–1289

    Article  PubMed  CAS  Google Scholar 

  193. Kerk N, Strozyk EA, Poppelmann B, Schneider SW (2010) The mechanism of melanoma-associated thrombin activity and von Willebrand factor release from endothelial cells. J Invest Dermatol 130:2259–2268

    Article  PubMed  CAS  Google Scholar 

  194. Fukushima M, Nakashima Y, Sueishi K (1989) Thrombin enhances release of tissue plasminogen activator from bovine corneal endothelial cells. Invest Ophthalmol Vis Sci 30:1576–1583

    PubMed  CAS  Google Scholar 

  195. Gudmundsdottir IJ, Megson IL, Kell JS, Ludlam CA, Fox KA, Webb DJ, Newby DE (2006) Direct vascular effects of protease-activated receptor type 1 agonism in vivo in humans. Circulation 114:1625–1632

    Article  PubMed  CAS  Google Scholar 

  196. Gelehrter TD, Sznycer-Laszuk R (1986) Thrombin induction of plasminogen activator-inhibitor in cultured human endothelial cells. J Clin Invest 77:165–169

    Article  PubMed  CAS  Google Scholar 

  197. Harlan JM, Thompson PJ, Ross RR, Bowen-Pope DF (1986) Alpha-thrombin induces release of platelet-derived growth factor-like molecule(s) by cultured human endothelial cells. J Cell Biol 103:1129–1133

    Article  PubMed  CAS  Google Scholar 

  198. Kavanaugh WM, Harsh GR IV, Starksen NF, Rocco CM, Williams LT (1988) Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular endothelial cells. J Biol Chem 263:8470–8472

    PubMed  CAS  Google Scholar 

  199. Isenovic ER, Kedees MH, Haidara MA, Trpkovic A, Mikhailidis DP, Marche P (2010) Involvement of ERK1/2 kinase in insulin-and thrombin-stimulated vascular smooth muscle cell proliferation. Angiology 61:357–364

    Article  PubMed  CAS  Google Scholar 

  200. Bogatcheva NV, Garcia JG, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry 67:75–84

    Article  PubMed  CAS  Google Scholar 

  201. Cernuda-Morollon E, Ridley AJ (2006) Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res 98:757–767

    Article  PubMed  CAS  Google Scholar 

  202. Rahman A, Anwar KN, True AL, Malik AB (1999) Thrombin-induced p65 homodimer binding to downstream NF-kappa B site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J Immunol 162:5466–5476

    PubMed  CAS  Google Scholar 

  203. Yong K, Khwaja A (1990) Leukocyte cellular adhesion molecules. Blood Rev 4:211–225

    Article  PubMed  CAS  Google Scholar 

  204. Merlini PA, Bauer KA, Oltrona L, Ardissino D, Cattaneo M, Belli C, Mannucci PM, Rosenberg RD (1994) Persistent activation of coagulation mechanism in unstable angina and myocardial infarction. Circulation 90:61–68

    PubMed  CAS  Google Scholar 

  205. Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99:1053–1059

    Article  PubMed  CAS  Google Scholar 

  206. Chen D, Carpenter A, Abrahams J, Chambers RC, Lechler RI, McVey JH, Dorling A (2008) Protease-activated receptor 1 activation is necessary for monocyte chemoattractant protein 1-dependent leukocyte recruitment in vivo. J Exp Med 205:1739–1746

    Article  PubMed  CAS  Google Scholar 

  207. Marin V, Montero-Julian FA, Gres S, Boulay V, Bongrand P, Farnarier C, Kaplanski G (2001) The IL-6-soluble IL-6Ralpha autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. J Immunol 167:3435–3442

    PubMed  CAS  Google Scholar 

  208. Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N, Shimokawa H, Egashira K, Takeshita A (2001) Thrombin induces interleukin-6 expression through the cAMP response element in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21:1759–1763

    Article  PubMed  CAS  Google Scholar 

  209. Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R (1999) Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol 19:2364–2367

    Article  PubMed  CAS  Google Scholar 

  210. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723

    Article  PubMed  CAS  Google Scholar 

  211. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596

    Article  PubMed  CAS  Google Scholar 

  212. Maragoudakis ME, Kraniti N, Giannopoulou E, Alexopoulos K, Matsoukas J (2001) Modulation of angiogenesis and progelatinase a by thrombin receptor mimetics and antagonists. Endothelium 8:195–205

    Article  PubMed  CAS  Google Scholar 

  213. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111:333–340

    PubMed  CAS  Google Scholar 

  214. Saederup N, Chan L, Lira SA, Charo IF (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2−/− mice: evidence for independent chemokine functions in atherogenesis. Circulation 117:1642–1648

    Article  PubMed  CAS  Google Scholar 

  215. Vicente CP, He L, Tollefsen DM (2007) Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood 110:4261–4267

    Article  PubMed  CAS  Google Scholar 

  216. O’Brien PJ, Prevost N, Molino M, Hollinger MK, Woolkalis MJ, Woulfe DS, Brass LF (2000) Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 275:13502–13509

    Article  PubMed  Google Scholar 

  217. Massberg S, Vogt F, Dickfeld T, Brand K, Page S, Gawaz M (2003) Activated platelets trigger an inflammatory response and enhance migration of aortic smooth muscle cells. Thromb Res 110:187–194

    Article  PubMed  CAS  Google Scholar 

  218. Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC (2009) Platelet functions beyond hemostasis. J Thromb Haemost 7:1759–1766

    Article  PubMed  CAS  Google Scholar 

  219. Chintala M, Shimizu K, Ogawa M, Yamaguchi H, Doi M, Jensen P (2008) Basic and translational research on proteinase-activated receptors: antagonism of the proteinase-activated receptor 1 for thrombin, a novel approach to antiplatelet therapy for atherothrombotic disease. J Pharmacol Sci 108:433–438

    Article  PubMed  CAS  Google Scholar 

  220. Hamilton JR (2009) Protease-activated receptors as targets for antiplatelet therapy. Blood Rev 23:61–65

    Article  PubMed  CAS  Google Scholar 

  221. Chackalamannil S, Wang Y, Greenlee WJ, Hu Z, Xia Y, Ahn HS, Boykow G, Hsieh Y, Palamanda J, Agans-Fantuzzi J, Kurowski S, Graziano M, Chintala M (2008) Discovery of a novel, orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity. J Med Chem 51:3061–3064

    Article  PubMed  CAS  Google Scholar 

  222. Chackalamannil S (2003) G-protein coupled receptor antagonists-1: protease activated receptor-1 (PAR-1) antagonists as novel cardiovascular therapeutic agents. Curr Topics Med Chem 3:1115–1123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants: Deutsche Forschungsgemeinschaft, Si 285/7-1 (to Tatiana Syrovets and Thomas Simmet), and Serbian Government Research Grants, No. 173033 (to Esma R. Isenović) and No. 175085 (to Milan Popović).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Popović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popović, M., Smiljanić, K., Dobutović, B. et al. Thrombin and vascular inflammation. Mol Cell Biochem 359, 301–313 (2012). https://doi.org/10.1007/s11010-011-1024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1024-x

Keywords

Navigation