Skip to main content

Native Fibrin Gel Networks and Factors Influencing their Formation in Health and Disease

  • Chapter
Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis

Summary

Hydrated fibrin gels were studied by confocal laser 3D microscopy, liquid permeation and turbidity. The gels from normal fibrinogen were found to be composed of straight rod-like fiber elements which sometimes originated from denser nodes. In gels formed at increasing thrombin or fibrinogen concentrations, the gel networks became tighter and the porosity decreased. The fiber strands also became shorter. Gel porosity of the network decreased dramatically in gels formed at increasing ionic strengths. Shortening of the fibers were observed and fiber swelling occurred at ionic strength above 0.24.

Albumin and dextran, when present in the gel forming system, affected the formation of more porous structures with strands of larger mass-length ratio and fiber thickness. This type of gels were also formed in plasma. Albumin and lipoproteins may be among the determinants for the formation of this type of gel structure in plasma.

Gels formed when factor XIIIa instead of thrombin was used as catalyst for gelation showed a completely different structure in which lumps of polymeric material were held together by a network of fine fiber strands.

Our studies have also shown that the methodologies employed may be useful in studies of gel structures in certain dysfibrinogenemias as well as in other diseases. We give examples of two patients with abnormal fibrinogen and of patients with ischaemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Dollittle, Fibrinogen and Fibrin, Ann. Rev. Biochem., 53:195–229 (1984).

    Article  Google Scholar 

  2. B. Blombäck, Fibrinogen to fibrin - An overview, in: “Fibrinogen-Structural Variants and Interactions, A. Henschen, B. Hessel, J. McDonagh and T. Saldeen, eds., Walter de Gruyter and Co., Berlin-New York. (1985).

    Google Scholar 

  3. G. R. Crabtree, The molecular biology of fibrinogen, in: “The Molecular Basis of Blood Diseases”, G. Stamatoyannopoulos, A. W. Nienhuis, P. Leder and P. W. Majerus, eds., W.B. Saunders Co., Philadelphia (1987).

    Google Scholar 

  4. W. Krakow, G. F. Endres, B. M. Siegel and H. A. Scheraga, An electron microscopic investigation of the polymerization of bovine fibrin monomer, J. Mol. Biol., 71:95–103 (1972).

    Article  PubMed  CAS  Google Scholar 

  5. R. C. Williams, Morphology of fibrinogen monomers and of fibrin protofibrils, Ann. N.Y. Acad. Sci., 408:180–193 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. J. Hermans, Models of fibrin, Proc. Natl. Acad. Sci. USA, 76:1189–1193 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. J. W. Weisel, Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides, Biophys. J., 50:1079–1093 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. J. W. Weisel, C. Nagaswami, and L. Makowski, Twisting of fibrin fibers limits their radial growth, Proc. Natl. Acad. Sci. USA, 84:8991–8995 (1987).

    Article  PubMed  CAS  Google Scholar 

  9. J. D. Ferry and P. R. Morrison, Preparation and properties of serum and plasma proteins - VIII. The conversion of human fibrinogen to fibrin under various conditions, J. Am. Chem. Soc., 69:388–400 (1947).

    Article  PubMed  CAS  Google Scholar 

  10. M. E. Carr, Jr., L. L. Shen and J. Hermans, Mass-length ratio of fibrin fibers from gel permeation and light scattering, Biopolymers, 16:1–15 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. G. A. Shah, C. H. Nair and D. P. Dhall, Physiological studies on fibrin network structure, Thromb. Res., 40:181–188 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. G. A. Shah, C. H. Nair and D. P. Dhall, Comparison of fibrin networks in plasma and fibrinogen solution, Thromb. Res., 45:257–264 (1987).

    Article  PubMed  CAS  Google Scholar 

  13. B. Blombäck and M. Okada, Fibrin gel structure and clotting time, Thromb. Res., 25:51–70 (1982).

    Article  PubMed  Google Scholar 

  14. W. H. Howell, The clotting of blood as seen with the ultramicroscope, Am. J. Physiol., 35:143–149 (1914).

    CAS  Google Scholar 

  15. J. M. Buchanan, L. B. Chen, T. Hamazaki, E. Lenk and D. F. Waugh, The early development of fibrin clot structure, in: “Chemistry and Biology of thrombin”, R. L. Lundblad, J. W. Fenton, II and K. G. Mann, eds., Ann Arbor Science Publishers Inc., New York (1977).

    Google Scholar 

  16. B. Blombäck, M. Okada, B. Forslind, and U. Larsson, Fibrin gels as biological filters and interfaces, Biorheology, 21:93–104 (1984).

    PubMed  Google Scholar 

  17. C. v. Z. Hawn and K. R. Porter, The fine structure of clots formed from purified bovine fibrinogen and thrombin: A study with the electron microscope, J. Exp. Med., 86:285–292 (1947).

    Article  Google Scholar 

  18. K. R. Porter, and C. v. Z. Hawn, Sequences in the formation of clots from purified bovine fibrinogen and thrombin: A study with the electron microscope, J. Exp. Med., 90:225–232 (1949).

    Article  PubMed  CAS  Google Scholar 

  19. G. A. Shah, I. A. Ferguson, T. Z. Dhall and D. P. Dhall, Polydispersion in the diameter of fibers in fibrin networks: Consequences on the measurement of mass-length ratio by permeability and turbidity, Biopolymers, 21:1037–1047 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. M. F. Müller, H. Ris. and J. D. Ferry, Electron microscopy of fine fibrin clots and fine and coarse fibrin films, J. Mol. Biol., 174:369–384 (1984).

    Article  PubMed  Google Scholar 

  21. M. W. Mosesson, J. P. DiOrio, M. F. Müller, J. R. Shainoff, K. R. Siebenlist, D. L. Amrani, G. A. Homandberg, J. Soria, C. Soria, and M. Samama, Studies on the ultrastructure of fibrin lacking fibrinopeptide B (β-fibrin), Blood, 69:1073–1081 (1987).

    PubMed  CAS  Google Scholar 

  22. G. Marguerie, G. Chagniel, and M. Suscillon, The binding of calcium to bovine fibrinogen, Biochim. Biophys. Acta, 490:94–103 (1977).

    Article  PubMed  CAS  Google Scholar 

  23. B. Blombäck, M. Blombäck, T. C. Laurent and H. Pertoft, Effect of EDTA on fibrinogen, Biochim. Biophys. Acta, 127:560–562 (1966).

    Article  PubMed  Google Scholar 

  24. M. Okada and B. Blombäck, Calcium and fibrin gel structure, Thromb. Res., 29:269–280 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. U. Abildgaard, Acceleration of fibrin polymerization by dextran and ficoll. Interaction with calcium and plasma proteins, Scand. J. Clin. Lab. Invest., 18:518–524 (1966).

    Article  PubMed  CAS  Google Scholar 

  26. M. Okada, B. Blombäck, and M. Block, Effect of albumin and dextran on fibrin gel structure, Thromb. Haemostas., 50:185 (1983).

    Google Scholar 

  27. M. E. Carr, and D. A. Gabriel, The effect of dextran 70 on the structure of plasma-derived fibrin gels, J. Lab. Clin. Med., 96:985–993 (1980).

    PubMed  CAS  Google Scholar 

  28. O. Tangen, K. O. Wik, I. A. M. Almquist, K.-E. Arfors and H.C. Hint, Effects of dextran on the structure and plasmin-induced lysis of human fibrin, Thromb. Res., 1:487–492 (1972).

    Article  CAS  Google Scholar 

  29. M. E. Carr and D. A. Gabriel, Dextran-induced changes in fibrin fiber size and density based on wavelength dependence of gel turbidity, Macro-molecules, 13:1473–1477 (1980).

    Article  CAS  Google Scholar 

  30. C. Southan, Molecular and genetic abnormalities of fibrinogen, in: Fibrinogen, Fibrin Stabilisation and Fibrinolysis J. L. Francis, ed., E. Horwood Ltd., Chichester, England (1988).

    Google Scholar 

  31. M. Blombäck, B. Blombäck, E. F. Mammen and A. S. Prasad, Fibrinogen Detroit - A molecular defect in the N-terminal disulphide knot of human fibrinogen? Nature, 218:134–137 (1968).

    Article  PubMed  Google Scholar 

  32. F. Ni, Y. Konishi, L. D. Bullock, M. N. Rivetna, and H. A. Scheraga, High-resolution NMR studies of fibrinogen-like peptides in solution: Structural basis for the bleeding disorder caused by a single mutation of Gly(12) to Val(12) in the Aa chain of human fibrinogen Rouen, Biochemistry, 28:3106–3119 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. C. Y. Liu, J. A. Koehn and F. J. Morgan, Characterization of fibrinogen New York 1, J. Biol. Chem., 260:4390–4396 (1985).

    PubMed  CAS  Google Scholar 

  34. N. Carrell, D. A. Gabriel, P. M. Blatt, M. E. Carr, and J. McDonagh, Hereditary dysfibrinogenemia in a patient with thrombotic disease, Blood, 62:439–447 (1983).

    PubMed  CAS  Google Scholar 

  35. S. E. Humphries, M. Cook, M. Dubowitz, Y. Stirling and T. W. Meade, Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations, The Lancet, 1:1452–1455 (1987).

    Article  CAS  Google Scholar 

  36. T. W. Meade, S. Mellows, M. Brozovic, G. J. Miller, R. R. Chakrabarti, W. R. S. North, A. P. Haines, Y. Stirling, J. D. Imeson and S. G. Thompson, Haemostatic function and ischaemic heart disease: Principal results of the Northwick Park heart study, The Lancet, ii:533–537 (1986).

    Article  Google Scholar 

  37. L. Wilhelmsen, K. Svärdsudd, K. Korsan-Bengtsen, B. Larsson, L. Welin and G. Tibblin, Fibrinogen as a risk factor for stroke and myocardial infarction, New Engl. J. Med., 311:501–505 (1984).

    Article  PubMed  CAS  Google Scholar 

  38. M. C. Stone and and J. M. Thorp, Plasma fibrinogen - A major coronary risk factor, J. Royal College of Gen. Practitioners, 35:565–569 (1985).

    CAS  Google Scholar 

  39. H. L. Markowe, M. G. Marmot, M. J. Shipley, C. J. Bulpitt, T. W. Meade, Y. Stirling, M. V. Vickers and A. Semmence, Fibrinogen: a possible link between social class and coronary heart disease, Brit. Med. J., 291:1312–1314 (1985).

    Article  CAS  Google Scholar 

  40. W. B. Kannel, W. P. Castelli and S. L. Meeks, Fibrinogen and cardiovascular disease, J. Am. Coll. Card., 5:517 (1985).

    Article  Google Scholar 

  41. J. (Brunner) Lorand, T. Urayama and L. Lorand, Transglutaminase as a blood clotting enzyme, Biochem. Biophys. Res. Commun.,23:828–834 (1966).

    Article  Google Scholar 

  42. B. Ly, P. Kierulf and E. Jakobsen, Stabilization of soluble fibrin/fibrinogen complexes by fibrin stabilizing factor (FSF), Thromb. Res., 4:509–522 (1974).

    Article  PubMed  CAS  Google Scholar 

  43. H. Kanaide and J. R. Shainoff, Cross-linking of fibrinogen and fibrin by fibrin-stabilizing factor (factor XIIIa), J. Lab. Clin. Med.,85:574–597 (1975).

    PubMed  CAS  Google Scholar 

  44. B. Blombäck, R. Procyk, L. Adamson and B. Hessel, FXIII induced gelation of human fibrinogen - An alternative thiol enhanced, thrombin independent pathway, Thromb. Res., 37:613–628 (1985).

    Article  PubMed  Google Scholar 

  45. R. Procyk and B. Blombäck, Factor XIII-induced crosslinking in solutions of fibrinogen and fibronectin, Biochim. Biophys. Acta, 967:304–313. (1988).

    Article  PubMed  CAS  Google Scholar 

  46. R. Procyk, L. Adamson, M. Block and B. Blombäck, Factor XIII catalyzed formation of fibrinogen-fibronectin oligomers - A thiol enhanced process, Thromb. Res.,40:833–852 (1985).

    Article  PubMed  CAS  Google Scholar 

  47. B. Blombäck, K. Carlsson, B. Hessel, A. Liljeborg, R. Procyk and N. Aslund, Native fibrin gel networks observed by 3D microscopy, permeation and turbidity, Biochim. Biophys. Acta, 997:96–110 (1989).

    Article  PubMed  Google Scholar 

  48. L. Lorand and T. Gotoh, Fibrinoligase - The fibrin stabilizing factor system, Methods in Enzymology, 19:770–782 (1970).

    Article  Google Scholar 

  49. M. S. Brown, S. E. Dana and J. L. Goldstein, Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts, J. Biol. Chem., 249:789–796 (1974).

    PubMed  CAS  Google Scholar 

  50. R. Signer and H. Egli, Sedimentation von Makromolekülen and Durchströmung von Gelen, Recueil,69:45–58 (1950).

    Article  CAS  Google Scholar 

  51. H. A. Scheraga and M. Laskowski, Jr., The fibrinogen-fibrin conversion, Adv. Protein Chem., 12:1–131 (1957).

    Article  CAS  Google Scholar 

  52. G. Marguerie and H. B. Stuhrmann, A neutron small-angle scattering study of bovine fibrinogen, J. Mol. Biol.,102:143–156 (1976).

    Article  PubMed  CAS  Google Scholar 

  53. K. Carlsson and A. Liljeborg, A confocal laser microscope scanner for digital recording of optical serial sections, J. Microscopy, 153:171–180 (1989).

    Article  CAS  Google Scholar 

  54. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning optical microscopy, Academic Press, London (1984).

    Google Scholar 

  55. J. L. Platt and A. F. Michael, Retardation of fading and enhancement of intensity of immunofluorescence by p-Phenylenediamine, J. Histochem. Cytochem.,31:840–842 (1983).

    Article  PubMed  CAS  Google Scholar 

  56. M. E. Carr, Jr. and J. Hermans, Size and density of fibrin fibers from turbidity, Macromolecules, 11:46–50 (1978).

    Article  PubMed  CAS  Google Scholar 

  57. B. Blombäck and M. Blombäck, Purification of human and bovine fibrinogen, Arkiv Kemi, 10:415–443 (1957).

    Google Scholar 

  58. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227:680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  59. M. Okada and B. Blombäck, Factors influencing fibrin gel structure studied by flow measurements, Ann. N.Y. Acad. Sci., 408:233–253 (1983).

    Article  PubMed  CAS  Google Scholar 

  60. T. Takala, H. Oksa, V. Rasi and R. Tuimala, Dysfibrinogenemia associated with thrombosis and third trimester fetal loss. A case report, Thromb. Res., In press (1990).

    Google Scholar 

  61. A. Hamsten, U. de Faire, G. Walldius, G. Dahlén, A. Szamosi, C. Landou, M. Blomäck and B. Wiman, Plasminogen activator inhibitor in plasma: Risk factor for recurrent myocardial infarction, The Lancet, ii: 3–9 (1987).

    Article  Google Scholar 

  62. A. Hamsten, M. Blombäck, B. Wiman, J. Svensson, A. Szamosi, U. de Faire and L. Mettinger, Haemostatic function in myocardial infarction, Brit. Heart J., 55:58–66 (1986).

    Article  PubMed  CAS  Google Scholar 

  63. V. Howard, S. Reid, A. Baddeley and A. Boyde, Unbiased estimation of particle density in the tandem scanning reflected light microscope, J. Microscopy, 138:203–212 (1985).

    Article  CAS  Google Scholar 

  64. B. Blombäck, Studies on the action of thrombic enzymes on bovine fibrinogen as measured by N-terminal analysis, Arkiv Kemi, 12:321–335 (1958).

    Google Scholar 

  65. W. A. Voter, C. Lucaveche and H. P. Erickson, Concentration of protein in fibrin fibers and fibrinogen polymers determined by refractive index matching, Biopolymers,25:2375–2384 (1986).

    Article  PubMed  CAS  Google Scholar 

  66. G. W. Nelb, C. Gerth, J. D. Ferry and L. Lorand, Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated clots, Biophys. Chem., 5:377–387 (1976).

    Article  PubMed  CAS  Google Scholar 

  67. R. R. Hantgan and J. Hermans, Assembly of fibrin - A light scattering study, J. Biol. Chem., 254:11272–11281 (1979).

    PubMed  CAS  Google Scholar 

  68. T. C. Laurent, Enzyme reactions in polymer media, Eur. J. Biochem., 21:498–506 (1971).

    Article  PubMed  CAS  Google Scholar 

  69. M. Okada, B. Blombäck, M.-D. Chang and B. Horowitz, Fibronectin and fibrin gel structure, J. Biol. Chem., 260:1811–1820 (1985).

    PubMed  CAS  Google Scholar 

  70. U. Larsson, R. Rigler, B. Blombäck, K. Mortensen and R. Bauer, Polymerisation of fibrinogen to fibrin studied by time-resolved small angel neutron scattering, in: Springer Series in Biophysics, Structure, Dynamics and Function of Biomolecules, A. Ehrenberg, R. Rigler, A. Gräslund and L. Nilsson, eds., Springer Verlag, Heidelberg (1987).

    Google Scholar 

  71. L. A. Carlson, L. E. Böttiger and P. E. Ahfeldt, Risk factors for myocardial infarction in the Stockholm prospective study, Acta Med. Scand., 206:351–360 (1979).

    Article  PubMed  CAS  Google Scholar 

  72. A. L. Copley, The endoendothelial fibrin(ogenin) lining and its physiological significance, Biorheology, 25:377–399 (1988).

    PubMed  CAS  Google Scholar 

  73. A. L. Copley, Perihemorheology: The bridge between the vessel-blood organ and the organs it penetrates, Biorheology, 26:377–388 (1989).

    PubMed  CAS  Google Scholar 

  74. Copley, A. L., The endo-endothelial fibrin lining. A historical account, in:The endoendothelial fibrin lining. Symposium of the XII Eur. Conf. on Microcirculation, Jerusalem, Israel, Sept (1982), A. L. Copley, ed., Pergamon Press, New York-Oxford, Thromb. Res. Suppl. V (1983).

    Google Scholar 

  75. S. D. Lewis, L. Lorand, J. W. Fenton, II and J. A. Shafer, Catalytic competence of human a-and y-thrombin in the activation of fibrinogen and factor XIII, Biochemistry, 26:7597–7603 (1987).

    Article  PubMed  CAS  Google Scholar 

  76. C. S. Greenberg, K. E. Achyuthan, S. Rajagopalan and S. V. Pizzo, Characterization of the fibrin polymer structure that accelerates thrombin cleavage of plasma factor XIII, Arch. Biochem. Biophys., 262:142–148 (1988).

    Article  PubMed  CAS  Google Scholar 

  77. Y. Ando, S. Imamura, Y. Yamagata, A. Kitahara, H. Saji, T. Murachi and R. Kannagi, Platelet factor XIII is activated by calpain, Biochem. Biophys. Res. Commun., 144:484–490 (1987).

    Article  PubMed  CAS  Google Scholar 

  78. B. Hessel, L. Adamson, R. Procyk, L. Therkildsen, S. Stenbjerg, B. Blombäck, Fibrinogen Aarhus and factor XIII induced polymerization and gel formation, Brit. J. Haematology, 66:355–361 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blombäck, B. et al. (1990). Native Fibrin Gel Networks and Factors Influencing their Formation in Health and Disease. In: Liu, C.Y., Chien, S. (eds) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis. Advances in Experimental Medicine and Biology, vol 281. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3806-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3806-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6697-3

  • Online ISBN: 978-1-4615-3806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics